Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trọng

giải giúp e đi ạ

Minhmetmoi
7 tháng 10 2021 lúc 13:22

Ở đây ta dùng công thức:

 \(\sin x+\cos x=\sqrt{2}\sin\left(x+\dfrac{\pi}{4}\right)\) và \(\sin x-\cos x=\sqrt{2}\cos\left(x+\dfrac{\pi}{4}\right)\)

PT

\(\Leftrightarrow\sin\left(\dfrac{3x}{2}+\dfrac{\pi}{4}\right)=3\cos\left(\dfrac{x}{2}+\dfrac{\pi}{4}\right)\)

\(\Leftrightarrow\sin\dfrac{3x}{2}+\cos\dfrac{3x}{2}=3\left(\sin\dfrac{x}{2}-\cos\dfrac{x}{2}\right)\)

Đặt \(t=\dfrac{x}{2}\)(Mình đặt lại để dễ nhìn)

Pt trở thành:

\(\sin3t+\cos3t=3(\sin t-\cos t)\)

\(\Leftrightarrow\left(3\sin t-4\sin^3t\right)+\left(4\cos^3t-3\cos t\right)=3\left(\sin t-\cos t\right)\)

\(\Leftrightarrow\sin^3t-\cos^3t=0\)

\(\Leftrightarrow\left(\sin t-\cos t\right)\left(1+\dfrac{\sin2t}{2}\right)=0\)

\(\Leftrightarrow\cos\left(t+\dfrac{\pi}{4}\right)=0\) (Do \(1+\dfrac{\sin2t}{2}>0\))

\(\Leftrightarrow t=\dfrac{\pi}{4}+k\pi\left(k\in Z\right)\)

hay \(x=\dfrac{\pi}{2}+k2\pi\)

 

Nguyễn Việt Lâm
7 tháng 10 2021 lúc 14:03

Đặt \(\dfrac{\pi}{4}-\dfrac{x}{2}=t\Rightarrow\dfrac{x}{2}=\dfrac{\pi}{4}-t\)

\(\Rightarrow\dfrac{\pi}{4}+\dfrac{3x}{2}=\dfrac{\pi}{4}+3\left(\dfrac{\pi}{4}-t\right)=\pi-3t\)

Phương trình trở thành:

\(sin\left(\pi-3t\right)=3sint\)

\(\Leftrightarrow sin3t=3sint\)

\(\Leftrightarrow3sint-4sin^3t=3sint\)

\(\Leftrightarrow sint=0\)

\(\Rightarrow t=k\pi\)

\(\Rightarrow\dfrac{\pi}{4}-\dfrac{x}{2}=k\pi\)

\(\Rightarrow x=\dfrac{\pi}{2}+k2\pi\)


Các câu hỏi tương tự
Trọng
Xem chi tiết
Trọng
Xem chi tiết
Trọng
Xem chi tiết
Trọng
Xem chi tiết
Nguyễn thị kim chi
Xem chi tiết
Gia Phong Dương Vũ
Xem chi tiết
Hùng võ
Xem chi tiết
Thùy Dương
Xem chi tiết
Tam Bui
Xem chi tiết