Ta có:
x + 1/2 + √(x + 1/4)
= x + 1/4 + √(x + 1/4) + 1/4
= (√(x + 1/4) + 1/2)^2
=> PT <=> x + |√(x + 1/4) + 1/2| = 2
Làm nốt
Ta có:
x + 1/2 + √(x + 1/4)
= x + 1/4 + √(x + 1/4) + 1/4
= (√(x + 1/4) + 1/2)^2
=> PT <=> x + |√(x + 1/4) + 1/2| = 2
Làm nốt
1. Trên mặt phẳng cho 2n điểm. Trong đó n điểm được tô màu đỏ và n điểm được tô màu xanh. CMR có ther kẻ được n đoạn thẳng, mỗi đầu mút được tô màu khác nhau và hai đoạn thẳng bất kỳ không có điểm chung,
2. Trên mặt phẳng cho 25 điểm sao cho trong 3 điểm bất kì luôn có 2 điểm cách nhau một khoãng không vượt quá 1. Chúng minh rằng có đường ròn bán kính 1 chứa trong đó ít nhất 13 điểm
3. Cho p là số nguyên tố lớn hơn 3 và n thuộc N*. CMR pn không thể là tổng lập phương của hai số dương
4. Cho 10 điểm phân biệt không có 3 điểm nào thẳng hàng ằm trong một tam giac đều có cạnh bằng 2 cm. CMR luôn tìm được 3 điểm trong 10 điểm đã cho sao cho 3 đỉnh của 3 điểm này tạo thành 1 tam giac có diện tích không vượt quá\(\frac{\sqrt{3}}{3}cm^2\) và có một góc nhỏ hơn 45o
TOÁN RỜI RẠC
1. Cho tam giác ABC có độ dài các đường phân giác trong nhỏ hơn 1.
Chứng minh rằng diện tích tam giác đó nhỏ hơn \(\frac{1}{\sqrt{3}}\)
2.Cho n số nguyên dương đôi một khác nhau. Tìm giá trị nhỏ nhất của n để tổng của 3 số bất kì trong n số luôn là 1 số nguyên tố
3. Một hình chữ nhật có kích thước 3x4 được chia thành 12 hình vuông đơn vị bởi các đường thẳng song song với cạnh.
- Chứng minh rằng với 7 điểm bất kì nằm trong hình chữ nhật luôn có thể chọn ra 2 điểm có khoảng cách không vượt quá \(\sqrt{5}\)
- Chứng minh rằng kết luận của bài toán vẫn đúng khi số điểm là 6 và sai khi số điểm là 5.
Trong hình vuông cạnh 4 dm người ta đặt 33 điểm trong đó không có 3 điểm nào thẳng hàng . Chứng minh rằng từ 33 điểm nói trên luôn có thể tìm được 3 điểm sao cho diện tích tam giác có 3 đỉnh đó không vượt quá \(\frac{1}{2}dm^2\)
Cho 2019 điểm trong đó cứ 3 điểm tạo thành một tam giác có diện tích không vượt quá 1.Chứng minh rằng 2019 điểm đó cùng nằm trong tam giác có diện tích nhỏ hơn hoặc bằng 4.
Cho tứ giác ABCD có diện tích bằng 10 Bên trong tứ giác lấy 4 điểm phân biệt để cùng với 4 đỉnh của tứ giác có 8 điểm trong đó không có 3 điểm nào thẳng hàng. Chứng minh tồn tại ít nhất một tam giác có 3 đỉnh lấy từ 8 điểm nói trên có S không vượt quá 1.
Bài 1:Giải pt(không dùng máy tính)
a)\(x=\sqrt[3]{4x^2-x-6}\)
b)\(\sqrt{x}^3=\left(\sqrt{x}-4\right)^2\)
c)\(x^4-x^2+1=-x^2+4x-2\)
Bài 2:Cho f(x)=(a-89)(a-90)x+1
Biết a=\(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2019}}\)
Cho \(m=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2020\sqrt{2019}+2019\sqrt{2020}}\)
\(n=\sqrt[3]{\sqrt{10}-\sqrt{3}}\)
So sánh \(f\left(m\right)\)và \(f\left(n\right)\)
Bài 3.Cho (d):\(y=\left(m^2+1\right)x-3m^2+1\)(m là tham số)
Lấy N(-1;7).Kẻ NH vuông góc với (d) ở H sao cho NH=5 cm.
a)Tìm m
b)Gọi d1;d2;...;d2019 đồng quy với NH tại 1 điểm thuộc đoạn NH.Gọi h1;h2;...;h2019 lần lượt là khoảng cách từ O đến d1;d2;...;d2019.
Tìm max của h1+h2+...+h2019.
Bài 4:Cho tam giác ABC nhọn.AH vuông BC ở H.Phân giác BM của góc ABC (M thuộc AC).Kẻ CE vuông AB ở E.CE cắt BM ở l.AH cắt BM ở F.CMR:BM.BI.BA=BC.BH.BK
Bài 5:Cho tam giác ABC nhọn.CMR:tanA+tanB+tanC=tanA.tanB.tanC.
Bài 6:Cho 2005 điểm thuộc cùng 1 mặt phẳng(không có điểm nào trùng nhau) sao cho trong 3 điểm bất kì ta luôn tìm được 2 điểm có khoảng cách nhỏ hơn 25 cm.CMR tồn tại 1 đường tròn bán kính 25 cm chứa ít nhất 1003 điểm trên
1. Trên mặt phẳng cho 2n điểm. Trong đó n điểm được tô màu đỏ và n điểm được tô màu xanh. CMR có ther kẻ được n đoạn thẳng, mỗi đầu mút được tô màu khác nhau và hai đoạn thẳng bất kỳ không có điểm chung,
2. Trên mặt phẳng cho 25 điểm sao cho trong 3 điểm bất kì luôn có 2 điểm cách nhau một khoãng không vượt quá 1. Chúng minh rằng có đường ròn bán kính 1 chứa trong đó ít nhất 13 điểm
3. Cho p là số nguyên tố lớn hơn 3 và n thuộc N*. CMR pn không thể là tổng lập phương của hai số dương
4. Cho 10 điểm phân biệt không có 3 điểm nào thẳng hàng ằm trong một tam giac đều có cạnh bằng 2 cm. CMR luôn tìm được 3 điểm trong 10 điểm đã cho sao cho 3 đỉnh của 3 điểm này tạo thành 1 tam giac có diện tích không vượt quá√33 cm2 và có một góc nhỏ hơn 45o
cho n điểm trong mp sao cho ko có 3 điểm nào thẳng hàng và 3 điểm bất kỳ tạo thành 1 tam giác có diện tích \(\le\) 1.CMR n điểm đã cho thuộc 1 tam giác có diện tích \(\le\) 4
Cho tam giác ABC có độ dài đường phân giác trong nhỏ hơn 1. Chứng minh rằng diện tích tam giác đó nhỏ hơn hoặc bằng \(\frac{\sqrt{3}}{3}\)