a, 3x3 + 2x2 + 2x + 3 = 0
<=>3x3+3+2x2+2x=0
<=>3(x3+1)+2x.(x+1)=0
<=>3.(x+1)(x2-x+1)+2x.(x+1)=0
<=>(x+1)[3.(x2-x+1)+2x]=0
<=>(x+1)(3x2-3x+3+2x)=0
<=>(x+1)(3x2-x+3)=0
mà 3x2-x+3=3.(x2-\(\frac{1}{3}\)x+1)
=3.(x2-2.x.\(\frac{1}{6}\)+\(\frac{1}{36}+\frac{35}{36}\))
=3.(x2-2.x.\(\frac{1}{6}+\frac{1}{36}\))\(+\frac{35}{12}\)
=3.(x-\(\frac{1}{6}\))2+\(\frac{35}{12}\ge0\left(\text{vì (x-}\frac{1}{6}\text{)}\ge0\right)\)
nên x+1=0
<=>x=-1