Giải bài toán bằng cách lập phương trình
Lúc 7h 15 phút hai ô tô cùng khởi hành từ A đến B .Vận tốc xe thứ nhất là 40km/h , vận tốc xe thứ hai là 60 km/h . Xe thứ nhất đi được nửa quãng đường thì nghỉ lại 15 phút . Xe thứ hai đến B nghỉ 45 phút rồi quay lại thì gặp xe thứ nhất ở C cách B 10 km . Tính quãng đường AB và cho biết hai xe gặp nhau lúc mấy giờ ?
Gọi độ dài quãng đường AB là x (km) (x>10)
Khi đó: thời gian xe thứ hai đi hết AB là: x/60 (h)
Tổng thời gian xe thứ hai đi đến lúc gặp xe thứ nhất là:
\(\frac{x}{60}+\frac{45}{60}+\frac{BC}{60}=\frac{x}{60}+\frac{3}{4}+\frac{10}{60}=\frac{x}{60}+\frac{11}{12}\left(h\right)\left(1\right)\)
Quãng đường AC là: x-10(km)
Khi đó: tổng thời gian xe thứ nhất đi được đến lúc gặp xe thứ hai là:
\(\frac{x-10}{40}+\frac{15}{60}=\frac{x}{40}-\frac{10}{40}+\frac{1}{4}=\frac{x}{40}-\frac{1}{4}+\frac{1}{4}=\frac{x}{40}\left(h\right)\left(2\right)\)
Từ (1) và (2)=>\(\frac{x}{60}+\frac{11}{12}=\frac{x}{40}\)
\(\Rightarrow\frac{x}{60}-\frac{x}{40}=-\frac{11}{12}\)
\(\Rightarrow x\left(\frac{1}{60}-\frac{1}{40}\right)=-\frac{11}{12}\)
\(\Rightarrow-\frac{1}{120}x=-\frac{11}{12}\)
\(\Rightarrow x=110\left(km\right)\left(tm\right)\)
Tổng thời gian xe thứ nhất đi được đến lúc gặp xe thứ hai là:\(\frac{x}{40}=\frac{110}{40}=\frac{11}{4}=2h45p\)
Vậy quãng đường AB dài 110km và họ gặp nhau lúc:
\(7h15p+2h45p=10h\)
Vậy...