giải và biện luận pt có m là hằng số
\(\frac{m^2\left[\left(x+2\right)^2-\left(x-2\right)^2\right]}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)
tìm m và n để trong mỗi hàm số sau là hàm số bậc nhất:
a, \(y=\left(3n-1\right)\left(2m+3\right)x^2-\left(4m+3\right)x-5m^2+mn-1\)
b, \(y=\left(m^2-2mn+n^2\right)x^2-\left(3m+n\right)x-5\left(m-n\right)+1\)
c, \(y=\left(m-1\right)\left(n+3\right)x^2-2\left(m+1\right)\left(n-3\right)x-4mn+3\)
d, \(y=\left(2mn+2m-n-1\right)x^2+\left(mn+2m-3n-6\right)x+mn^2-2m+1\)
giúp mk vs m.n ơi!!!!! camon m.n nhìu nà!!! :)))
giải và biện luận phương trình:
1) \(\left(m^2-2m\right)\left(x+2\right)+m^2=3m-1-2x\)
2) \(\left(3m-1\right)\left(x-4m^2\right)-m+1=4m^2x+5\)
\(hpt:\hept{\begin{cases}3x+2y=-8\\-3x+\left(m+5\right)y=\left(m-1\right)\left(m+1\right)\end{cases}}\)
từ pt 1 \(\Rightarrow y=\frac{-8-3x}{2}\)(3)
thay (3) vào pt 2 ta được
\(-3mx+\left(m+5\right)\left(\frac{-8-3x}{2}\right)=\left(m-1\right)\left(m+1\right)\)
\(\Leftrightarrow-6mx-8m-40-15x-3mx=2\left(m^2-1\right)\)
\(\Leftrightarrow-9mx-15x=2m^2-2+40+8m\)
\(\Leftrightarrow x\left(-9m-15\right)=2m^2+8m+38\)(*)
để hệ phương trình có No duy nhất thì -9m-15\(\ne\)0 \(\Leftrightarrow m\ne\frac{-15}{9}\)
khi đó pt * có No: \(x=-\frac{2m^2+8m+38}{9m+15}\)
với \(x=-\frac{2m^2+8m+38}{9m+15}\)thì \(y=\left(-8+\frac{3\left(2m^2+8m+38\right)}{9m+15}\right):2=\frac{-8\left(9m+15\right)+3\left(2m^2+8m+38\right)}{9m+15}.\frac{1}{2}\)
\(=\frac{-72m-120+6m^2+24m+114}{9m+15}.\frac{1}{2}=\frac{6m^2-48m-6}{9m+15}.\frac{1}{2}=\frac{2\left(3m^2-24m-3\right)}{9m+15}.\frac{1}{2}=\frac{3m^2-24m-3}{9m+15}\)
Tìm m để các ptr sau có nghiệm kép.Tìm nghiệm kép đó
a,\(x^2-5x-2m+5=0\)
b,\(x^2-\left(2m-1\right)x+m^2-2m+3=0\)
c,\(\left(m+3\right)x^2-\left(2m+1\right)x+\left(m-1\right)=0\)
Giải, biện luận PT: \(\left(m+2\right)x^2-2\left(m-1\right)x+3-m=0\)
Định m để HPT có nghiêm
1.\(\hept{\begin{cases}m\left(m-1\right)x+m\left(m+1\right)y=m^3+2\\\left(m^2-1\right)x+\left(m^3+1\right)y=m^4-1\end{cases}}\)
2.\(\hept{\begin{cases}\left(m+3\right)x+\left(m-3\right)y=2m\\\left(m^2+9\right)+\left(m^2-9\right)y=2m^2\end{cases}}\)
Mình cần gấp lắm!!!Cứu với
tìm m để pt \(\left[x^2-2mx-4\left(m^2+1\right)\right]\left[x^2-4x-2m\left(m^2+1\right)\right]=0\) có 3 nghiệm phân biệt
Giải và biện luận hệ phương trình:\(\hept{\begin{cases}2\left(m-1\right)\cdot x+y=2\\\left(m+2\right)\cdot x+\left(m-1\right)\cdot y=3\end{cases}}\)