Ta có: 2(3x+1)4\(\ge\)0 với mọi x
và 3/1-y/3\(\ge\)0 với mọi y
=> 2(3x+1)4+3/1-y/3+2\(\ge\)2*0 + 3*0 + 2=2
Để biểu thức đạt GTLN => 2(3x+1)4+3/1-y/3+2 đạt GTNN
GTNN của biểu thức 2(3x+1)4+3/1-y/3+2 là 2, đạt được khi \(\hept{\begin{cases}2\left(3x+1\right)^4=0\\3|1-y|^3=0\end{cases}}\)<=> \(\hept{\begin{cases}x=-\frac{1}{3}\\y=1\end{cases}}\)
Khi đó, GTLN của biểu thức là: \(\frac{3}{2}\)đạt được khi \(\hept{\begin{cases}x=-\frac{1}{3}\\y=1\end{cases}}\)
Vì 2.(3x+1)^4 và 3|1-y|^3 đều >= 0
=> mẫu số của phân số trên >= 2
=> biểu thức trên < = 3/2
Dấu "=" xảy ra <=> 3x+1 = 1-y = 0 <=> x=-1/3 và y=1
Vậy ............
Tk mk nha