Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{x+9}{x+5}=\frac{2}{7}\) => \(\frac{x+9}{2}=\frac{x+5}{7}=\frac{x+9-\left(x+5\right)}{2-7}=\frac{4}{-5}=\frac{-4}{5}\)
=> x + 5 = \(2.\frac{-4}{5}=\frac{-8}{5}\)
=> x = \(\frac{-8}{5}-5=\frac{-33}{5}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{x+9}{x+5}=\frac{2}{7}\) => \(\frac{x+9}{2}=\frac{x+5}{7}=\frac{x+9-\left(x+5\right)}{2-7}=\frac{4}{-5}=\frac{-4}{5}\)
=> x + 5 = \(2.\frac{-4}{5}=\frac{-8}{5}\)
=> x = \(\frac{-8}{5}-5=\frac{-33}{5}\)
Giá trị của x thỏa mãn \(\frac{x-1}{x+2}=\frac{x-2}{x+3}\)
Giá trị của x thỏa mãn \(\frac{x+9}{x+5}=\frac{2}{7}\)
Số giá trị của x thỏa mãn \(\left|x+\frac{5}{2}\right|+\left|\frac{2}{5}-x\right|=0\)
Giá trị của x thỏa mãn \(\frac{x+9}{x+5}=\frac{2}{7}\)
1/ Giá trị x thỏa mãn:
\(\frac{x+9}{x+5}=\frac{2}{7}\)
2/Giá trị y thỏa mãn
7x=2y và x+y=9
Giá trị bé nhất của \(\left|x^2+3\right|+\left|y^2+6\right|=12,5\)
Giá trị của x thỏa mãn \(\frac{x+9}{x+5}=\frac{2}{7}\)
Số giá trị của x thỏa mãn \(\left|x+\frac{5}{2}\right|+\left|\frac{2}{5}-x\right|=0\)
1,Giá trị x thỏa mãn:
(x-2)2\(\le\)0
2,Số giá trị của x thỏa mãn:
/\(x+\frac{5}{2}\)/+/\(\frac{2}{5}-x\)/=0
3,Già trị x>0 thỏa mãn:
\(\frac{x}{15}=\frac{y}{9}\)và xy =15
giá trị nguyên của x thỏa mãn
\(\left(x-\frac{3}{5}\right).\left(x+\frac{2}{7}\right)< 0\) là x =
Giá trị nguyên lớn nhất của x thỏa mãn
\(\frac{-17}{21}:\left(\frac{5}{4}-\frac{2}{5}\right)< x+\frac{4}{7}< 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\) là .....
Giá trị nguyên nhỏ nhất của x thỏa mãn
\(\frac{4}{3}.1,25.\left(\frac{16}{5}-\frac{5}{16}\right)< 2x< 4-\frac{4}{3}+3-\frac{3}{2}+2\) là .......
NHỚ GHI CÁCH LÀM ĐẦY ĐỦ VÀ CHÍNH XÁC MÌNH SẼ TÍCH CHO
Giá trị nguyên của x thỏa mãn \(\left(x-\frac{3}{5}\right)\left(x+\frac{2}{7}\right)< 0\) là x =
lới giải đầy đủ, mình sẽ tick
giá trị x>0 nguyên thỏa mãn: \(-\frac{7}{3}< \left|\frac{2}{7}-x\right|-\frac{5}{2}< -\frac{7}{4} \)