Trục căn lên rồi rút gọn thì được \(A=-3,5\)
Sao đề kì vậy? Cộng trừ lẫn lộn, mẫu lúc số lẻ lúc số chẵn
Trục căn lên rồi rút gọn thì được \(A=-3,5\)
Sao đề kì vậy? Cộng trừ lẫn lộn, mẫu lúc số lẻ lúc số chẵn
tính giá trị của biểu thức A=\(1-\frac{1}{1+\sqrt{3}}-\frac{1}{\sqrt{3}+\sqrt{5}}-\frac{1}{\sqrt{5}+\sqrt{7}}-.....-\frac{1}{\sqrt{98}+\sqrt{100}}\)
1) cho biểu thức P=\(\frac{\sqrt{a}+2}{\sqrt{a}+3-}-\frac{5}{a+\sqrt{a}-6}+\frac{1}{2-\sqrt{a}}\)
a/ rút gọn P
b/ tìm giá trị của a để P<1
2) cho biểu thức P=\(\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)
a/ rút gọn P
b/ tìm giá trị của P<0
Chứng minh giá trị của biểu thức : \(B=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\)không là số nguyên
Tính giá trị của biểu thức:
Q = \(\frac{1-\sqrt{2}+\sqrt{3}}{1+\sqrt{2}+\sqrt{3}}+\frac{1-\sqrt{3}+\sqrt{4}}{1+\sqrt{3}+\sqrt{4}}+\frac{1-\sqrt{4}+\sqrt{5}}{1+\sqrt{4}+\sqrt{5}}+...+\frac{1-\sqrt{2012}+\sqrt{2013}}{1+\sqrt{2012}+\sqrt{2013}}\)
Bài 1: Tính giá trị của biểu thức:\(\frac{1}{1\sqrt{2}+2\sqrt{1}}+\frac{1}{2\sqrt{3}+3\sqrt{2}}+\frac{1}{3\sqrt{4}+4\sqrt{3}}+...+\frac{1}{2017\sqrt{2018}+2018\sqrt{2017}}\)
Bài 2: Chứng minh rằng các biểu thức sau có giá trị là số nguyên
A = \(\left(\sqrt{57}+3\sqrt{6}+\sqrt{38}+6\right)\left(\sqrt{57}-3\sqrt{6}-\sqrt{38}+6\right)\)
B = \(\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
Tính giá trị của biểu thức: \(\frac{1}{\sqrt{3}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{7}}+\frac{1}{\sqrt{7}+\sqrt{9}}+...+\frac{1}{\sqrt{97}+\sqrt{99}}\)
Tính giá trị biểu thức sau :\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\)
1. Cho biểu thức: A=\(\left(\frac{x+\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}-x}{\sqrt{x}-1}\right)\left(1+\frac{1}{\sqrt{x}}\right)\)
a) Rút gọn biểu thức A
b) Tìm giá trị của x để A= 4
2. Rút gọn các biểu thức sau:
a) A= \(3\sqrt{12}-4\sqrt{3}+5\sqrt{27}\)
b) B= \(\frac{1}{\sqrt{7}+4\sqrt{3}}\)
3. Tính giá trị biểu thức D=\(\sqrt[3]{70-\sqrt{4901}}+\sqrt[3]{70+\sqrt{4901}}\)
Tính giá trị biểu thức \(\frac{1}{\sqrt{3}+1}+\frac{1}{\sqrt{5}+\sqrt{3}}+...+\frac{1}{\sqrt{2017}+\sqrt{2015}}\)