\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca=\)
\(=\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca\right)=13^2=169\)
\(\Rightarrow85+2\left(ab+bc+ca\right)=169\Rightarrow ab+bc+ca=42\)
(a +b+c)2 = a2 + b2 + c2 + 2ab + 2ac + 2bc ( hằng đẳng thức mở rộng )
132 = 85 + 2 ( ab + bc +ca )
\(\Rightarrow\)ab + bc + ca = (169 - 85) :2 = 42