Bài 1: Tính giá trị của biểu thức:\(\frac{1}{1\sqrt{2}+2\sqrt{1}}+\frac{1}{2\sqrt{3}+3\sqrt{2}}+\frac{1}{3\sqrt{4}+4\sqrt{3}}+...+\frac{1}{2017\sqrt{2018}+2018\sqrt{2017}}\)
Bài 2: Chứng minh rằng các biểu thức sau có giá trị là số nguyên
A = \(\left(\sqrt{57}+3\sqrt{6}+\sqrt{38}+6\right)\left(\sqrt{57}-3\sqrt{6}-\sqrt{38}+6\right)\)
B = \(\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
Cho biểu thức
\(A=\left(\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{1}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
1. Rút gọn biểu thức A
2. Tính giá trị của A tại \(x=\frac{25}{16}\)
3. Với giá trị nào của x thì biểu thức A nhận giá trị âm
4. Tính giá trị của A sau khi \(x=\sqrt{7-2\sqrt{6}}+3\)
Câu 12. Giá trị của biểu thức 4√80 − 5√5 + 3√125 là:
A. 5
B. 20√5
C. 30√5
D.10
Câu 13. So sánh 5 3 √6 và 6 3 √5
A. 5 3 √6 > 6 3 √5
B. 5 3 √6 = 6 3 √5
C. 5 3 √6 < 6 3 √5
D. 5 3 √6 ≥ 6 3 √5
Câu 14.Giá trị của biểu thức M = 3 √1353 √5 - 3 √54. 3 √4 − 3 √−729 là:
A. 10
B. 9
C.6
D.22
Câu 15. Biết 3 √𝑎 = 1,1. Tìm a
A. 0,2
B.1,6
C. 1,1
D. 2,5
Câu 16. Điều kiện của √𝑥+2
𝑥2−1 là:
A.x>0
B. x ≥ 0 , 𝑥 ≠ 1
C. x ≥ 0 , 𝑥 ≠ −1
D. x ≥ 0 , 𝑥 ≠ 1, 𝑥 ≠ −1
Bài 1: tìm x. Biết
a. x^2 =49
b. √2x =6
c. 2√x =6
d. √x-1 < √7
Bài 2: tính giá trị của biểu thức
a. √0.04 +√0.16
b. 70.08 + 14√0.36
c. (11- 4√3) . ( 11+ 4√3 )
d. ( 2 - √3 ) . ( 2 +√3 )
Nếu Sina = \(\dfrac{\sqrt{3}-1}{4}\) thì 2.Cos a có giá trị bằng
A. \(\dfrac{\sqrt{12+\sqrt{3}}}{2}\) B. \(\dfrac{\sqrt{12+2\sqrt{3}}}{2}\) C.\(\dfrac{\sqrt{6-\sqrt{3}}}{4}\) D.\(\dfrac{\sqrt{6+2\sqrt{3}}}{4}\)
Tính giá trị biểu thức:
a) \(\frac{\sqrt[3]{4}+\sqrt[3]{2}+2}{\sqrt[3]{4}+\sqrt[3]{2}+1}\)
b) \(\sqrt{3+\sqrt{3}+\sqrt[3]{10+6\sqrt{3}}}\)
c) \(\frac{4+2\sqrt{3}}{\sqrt[3]{10+6\sqrt{3}}}\)
B= căn a+ 3/ 2 căn a-6 - 3 - căn a/ 2 căn a + 6
a. rút gọn B
b. với giá trị nào của a thì b>1; b<1
c. tìm các giá trị của a để b=4
Câu 3: Cho biểu thức A=\(\dfrac{\sqrt{x}}{\sqrt{x}-1}\) + \(\dfrac{3}{\sqrt{x}+1}\) + \(\dfrac{6\sqrt{x}-4}{1-x}\)
a. Tìm điều kiện của x để A có nghĩa rồi rút gọn A. Tính giá trị của A khi x = 6-2\(\sqrt{5}\)
b. Tìm giá trị của x để A < \(\dfrac{1}{2}\)
c. Tìm giá trị nhỏ nhất của biểu thức A
Cho biểu thức P = \(\sqrt{a^2+6+6\sqrt{a-3}}\) + \(\sqrt{a+6-6\sqrt{a-3}}\). Tính giá trị của biểu thức với a lớn hơn hoặc bằng 3
Bài 1: Rút gọn biểu thức:
\(A=\frac{a^3-3a+\left(a^2-1\right)\sqrt{a^2-4}-2}{a^3-3a+\left(a^2-1\right)\sqrt{a^2-4}+2}\left(a>2\right)\)
\(B=\sqrt{\frac{1}{a^2+b^2}+\frac{1}{\left(a+b\right)^2}+\sqrt{\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{\left(a^2+b^2\right)^2}}}\left(ab\ne0\right)\)
Bài 2: Tính giá trị của biểu thức:
\(E=\frac{1}{1\sqrt{2}+2\sqrt{1}}+\frac{1}{2\sqrt{3}+3\sqrt{2}}+\frac{1}{3\sqrt{4}+4\sqrt{3}}+...+\frac{1}{2017\sqrt{2018}+2018\sqrt{2017}}\)
Bài 3: Chứng minh rằng các biểu thức sau có gúa trị là số nguyên
\(A=\left(\sqrt{57}+3\sqrt{6}+\sqrt{38}+6\right)\left(\sqrt{57}-3\sqrt{6}-\sqrt{38}+6\right)\)
\(B=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)