Ta có x = \(\frac{2a}{2m}\)< \(\frac{a+b}{2m}\)= z
y = \(\frac{2b}{2m}\)> \(\frac{a+b}{2m}\)= z
Do x < y => a/m < b/m
=> a/m + a/m < a/m + b/m < b/m + b/m
=> 2x < a+b/m < 2y
=> x < a+b/m : 2 < 2y
=> x < a+b/m . 1/2 < y
=> x < a+b/2m < y
Chứng tỏ ...
có x<y\(\rightarrow\)\(\frac{a}{m}\)<\(\frac{b}{m}\)\(\rightarrow\)a<b
vì a<b \(\Rightarrow\)a+a<a+b suy ra 2a<a+b (1)
vì a<b\(\Rightarrow\)a+b<b+b suy ra a+b<2b
từ (1)(2) suy ra 2a <a+b <2b
\(\Rightarrow\)\(\frac{2a}{2m}\)<\(\frac{a+b}{2m}\)<\(\frac{2b}{2m}\)\(\rightarrow\)\(\frac{a}{m}\)<\(\frac{a+b}{2m}\)<\(\frac{b}{m}\)
\(\Rightarrow\)x<z<y
( nhớ cho mình tích đấy nha!)
,
Giả sử Do x < y => a/m < b/m
=> a/m + a/m < a/m + b/m < b/m + b/m
=> 2x < a+b/m < 2y
=> x < a+b/m : 2 < 2y
=> x < a+b/m . 1/2 < y
=> x < a+b/2m < y
Phương pháp giải - Xem chi tiết
+) Sử dụng tính chất: Nếu a,b,c∈Za,b,c∈Z và a<ba<b thì a+c<b+c.a+c<b+c.
Lời giải chi tiết
Theo đề bài ta có x=amx=am; y=bmy=bm (a,b,m∈Z,m>0)(a,b,m∈Z,m>0)
Vì x<yx<y nên ta suy ra a<b.a<b.
Ta có : x=2a2mx=2a2m, y=2b2my=2b2m;z=a+b2mz=a+b2m
Vì a<b⇒a+a<a+b⇒2a<a+b.a<b⇒a+a<a+b⇒2a<a+b.
Do 2a<a+b2a<a+b nên x<z(1)x<z(1)
Vì a<b⇒a+b<b+b⇒a+b<2b.a<b⇒a+b<b+b⇒a+b<2b.
Do a+b<2ba+b<2b nên z<y(2)z<y(2)
Từ (1) và (2) ta suy ra x<z<y.
đáp số
y = 2b / 2m > a + b / 2m = z
hok tốt
đáp số
y = 2b / 2m > a + b / 2m = z
hok tốt
TỪ GT SUY RA Z=A+B/2M=X+Y/2 MÀ X<Y =>Z<2Y/2=Y.
TƯƠNG TỰ Z>2X/2=X
DO ĐÓ X<Z<Y