giả sử x\(\ne\pm\)y thỏa mãn điều kiện \(\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4+y^4}+\frac{8y^8}{x^8-y^8}=4\)
Chứng minh 4x=5y
cho x khác +_ ythoar mãn :\(\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4+y^4}+\frac{8y^8}{x^8-y^8}=4\).chứng minh 5y=4x
Giả sử x khác +-ythỏa mãn điều kiện(y/x+y) +(2y^2/x^2+y^2)+(4y^4/x^4+y^4)+(8y^8/x^8-y^8)=4 .Cm 5y=4x
Giúp với đề bd hơi khó :)
cho x;y là các số thwucj dương phân biệt thỏa mãn ;
\(\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4+y^4}+\frac{8y^8}{x^8-y^8}=4\)
CMR : 5y=4x
giả sử x,y là những số thực dương phân biệt thỏa mãn:
\(\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4+y^4}+\frac{8y^8}{x^8-y^8}=4\)
CMR: 5y=4x
a)Cho x và y là hai số thực thoã mãn 3x-=1 chứng minh rằng : 5^2-^2<5/4
b)Cho x khác y ; x khác -y;y khác 0 thoã mãn y/x+y + 2y^2/x^2+y^2 + 4y^4/x^4+y^4 + 8y^8/x^8-y^8=2021 tính giá trị x/y
a) Giả sử \(x\)\(\ne\)\(\pm\)\(y\)thỏa mãn điều kiện:
\(\frac{y}{x+y}\)\(+\)\(\frac{2y^2}{x^2+y^2}\)\(+\)\(\frac{4y^4}{x^4+y^4}\)\(+\)\(\frac{8y^8}{x^8-y^8}\)\(=\)\(4\)
Chúng minh rằng: 5y = 4x
b) Cho 2 số dương a,b thỏa mãn \(a-b\)\(=\)\(a^3\)\(+\)\(b^3\). Chứng minh rằng \(a^2\)\(+\)\(b^2\)\(< 1\)
c) cho a,b,c,d \(\in\)\(ℤ\)thảo mãn \(a^3\)\(+\)\(b^3\)\(=\)\(2\left(c^3-8d^3\right)\). Chứng minh rằng: \(a+b+c+d\)chia hết cho 3
8,Thực hiện phép tính
a,\(\frac{5x^2-y^2}{xy}-\frac{3x-2y}{y}\)
b,\(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\)
c,\(\frac{2x}{x^2+2xy}+\frac{y}{xy-2y^2}+\frac{4}{x^2-4y^2}\)
d,\(\frac{1}{x-y}+\frac{3xy}{y^3-x^3}+\frac{x-y}{x^2+xy+y^2}\)
e,\(\frac{2x+y}{2x^2-xy}+\frac{16x}{y^2-4x^2}+\frac{2x-y}{2x^2+xy}\)
f,\(\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
a,cho các số x,y,z khác 0 thoả mãn
\(x-2y+\frac{z}{y}=z-2x+\frac{y}{x}=x-2z-\frac{y}{z}\).Tính giá trị biểu thức A=\(\left(1+\frac{y}{x}\right)\times\left(1+\frac{y}{x}\right)=\left(1+\frac{x}{z}\right)+2020\)
b, tìm các số tự nhiên x,y thoả mãn xy+4x=35+5y
c, tìm các số tự nhiên x,y thoả mãn 2^/x/+y^2+y=2x+1