Giả sử phương trình Ax2+Bx+C=0 có hai nghiệm x1, x2 thì x + x=-B/A, x*x=C/A. Cho a khác 0 và giả sử phương trình x2 - ax - 1/2a2. Chứng minh rằng x14+x24 >=2+√2
Giả sử phương trình ax^2+bx+c=0 có hai nghiệm phân biệt là x1 và x2 khác 0. Hãy lập phương trình có nghiệm là :
a/ x12 và x22
b/ x1+x2 và x1x2
Giả sử a, b, c là các số thực,\(a\ne b\)sao cho 2 phương trình \(x^2+ax+1=0\) , \(x^2+bx+1=0\)có nghiệm chung và 2 phương trình \(x^2+x+a=0\), \(x^2+cx+b=0\)có nghiệm chung.
Tính \(a+b+c\)
giả sử a,b là 2 nghiệm của phương trình: x^2 + mx +1 =0 và b,c là 2 nghiệm của pt: x^2 + nx + 2 =0.
Chứng minh: (b-a)(b-c)=mn-6
giả sử a,b là nghiệm của phương trình \(x^2+px+1=0\)
giả sử c,d là nghiệm của phương trình \(x^2+qx+1=0\)
chứng minh hệ thức: (a-c)(a+d)(b+d)=\(q^2-p^2\)
Gỉa sử a, b, c là các số thực, a#b sao cho 2 phương trình: \(x^2+ax+1=0\), \(x^2+bx+1=0\) có nghiệm chung và 2 phương trình \(x^2+x+a=0\), \(x^2+cx+b=0\)có nghiệm chung.
Tính: \(a+b+c\)
cho a,b,c là các số dương đôi một khác nhau có tổng là 12.CMR trong ba phương trình sau có một phương trình vô nghiệm 1 phương trình có nghiệm
(1) x2+ax+b=0
(2)x2+bx+c=0
(3)x2+cx+a=0
Cho a,b,c là 3 số phân biệt sao cho các phương trình: x2+ax+1=0 và x2+bx+c=0 có nghiệm chung. Đồng thời các phương trình x2+x+a=0 và x2+cx+b=0 cũng có nghiệm chung.
Tính giá trị của biểu thức P=a+b+c
1)Xác định m và n để các phương trình sau đây là phương trình bậc hai
a) (m-2).x^3+3.(n^2-4n+m).x^2-4x+7=0
b) (m^2-1).x^3-(m^2-4m+3).x^2-3x+2=0
2) Cho các phương trình sau. Gọi x1 là nghiệm cho trước hãy định m để phương trình có nghiệm x1 và tính nghiệm còn lại
a) x^2-2mx+m^2-m-1 =0 (x1=1)
b) (m-1)x^2+(2m-2).x+m+3 =0 (x1=0)
c) (m^2-1).x^2+ (1-2m).x+2m-3 = 0 (x1=-1)
Cho phương trình
\(ax^2+bx+c=0\left(1\right)\)
\(cx^2+bx+a=0\left(2\right)\)
a) Chứng minh rằng 2 phương trình đã cho cùng có nghiệm hoặc cùng vô nghiệm
b)Giả sử \(x_1,x_2\) và \(x'_1,x'_2\) lần lượt là các nghiệm của phương trình(1) và phương trình(2). Chứng minh rằng \(x_1x_2+x'_1x'_2>2\)