Giả sử a,b,c,d là 4 số nguyên bất kì. CMR:
(b-a)(c-a)(d-a)(d-c)(d-b)(c-b) chia hết cho 12
Cho bốn số tự nhiên bất kì a,b,c,d và a>b>c>d.
Chứng tỏ rằng tích của các số tự nhiên là hiệu của hai trong bốn số đã cho là một số chia hết cho 12
Chứng minh rằng với mọi a, b, c và d là các số nguyên thì T = (a - b )(a - c)(a - d)(b - c)(b - d)(c - d) chia hết cho 12
- Cho a,b,c,d là các số nguyên bất kỳ. CMR: (a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12
Cho a,b,c,d là bốn số nguyên dương, chứng minh a/b+c+d + b/a+c+d + c/a+b+d + d/a+b+c không phải là số nguyên (chứng minh nó bé hơn hai thôi cũng được)
Cho 4 số tự nhiên bất kì a ,b,c,d va a>b>c>d .Chứng tỏ rằng tích của tất cả các số tự nhiên là hiệu của 2 trong 4 số đó là 1 số chia hết cho 12 ?
Cho a;b;c;d là các số nguyên tố > 2 thỏa mãn a^5+b^5+c^5+d^5 chia hết cho 40.Chứng minh a+b+c+d chia hết cho 40
chứng minh rằng S=(a-b).(a-c).(a-d).(b-c).(b-d).(c-d) luôn chia hết cho 6 với mọi số nguyên a; b; c; d
cho 5 số nguyên dương a;b;c;d;e .chứng minh rằng (a-b)(a-c)(a-d)(a-e)(b-c)(b-d)(b-e)(c-d)(c-e)(d-e) chia hết cho 288