Giả sử a,b thuộc N và ( 16a+17b).(17a+16b) chia hết cho 11.
Chứng minh (16a+17b)(17a+16b) chia hết cho 121
cho a,b thuộc Z thỏa mãn (16a+ 17b) (17a+16b) chia hết cho 11, chứng minh rằng (16a + 17b) (17a +16b) chia hết cho 121
1.tìm số tự nhiên n để :2^2n+2^n+1 chia hết cho 7
2.cho a,bthuộc z thỏa mãn (16a+17b ).(17a+16b)chia hết cho 11 chứng minh rằng (16a+17b).(17a+16b)chia hết cho 121
3cho a=4^n+15n-1 với n thuộc N chứng minh rằng a chia hết cho 9
giải chi tiết giùm mình nhé!
a,b thuộc z thỏa mãn (16a + 17b).(17a + 16b) chia hết cho 11 CMR (16a + 17b).(17a + 16b) chia hết cho 121
Cho a,b thuộc N và (16a + 17b)(17a + 16b) chia hết cho 11
C/m (16a + 17b)(17a + 16b) chia hết cho 121
Cho a, b \(\in\) Z, biết: (16a+17b) . (17a+16b) chia hết cho 11. CMR: tích (16a+17b) . (17a+16b) chia hết cho 121?
cho a,b thỏa mãn (16a+ 17b). (17a+ 16b) chia hết cho 11.
CMR (16a+ 17b) (17a+ 16b) chia hết cho 121.
AI NHANH MK TICK CHO NHÉ! MK ĐANG CẦN GẤP.
cho a và b là hai số tự nhiên lớn hơn 0. chứng minh rằng nếu (16a +17b).(17a+16b) chia hết cho 11 thì tích có ít nhất 1 ước là số chính phương.
\(\text{Cho các số tự nhiên a và b thỏa mãn (17a+16b)x(16a+17b) }⋮11CMR\text{ (17a+16b)x(16a+17b) }\)\(⋮121\)