giải pt \(10+\sqrt{3}x^3+3x+\frac{\sqrt{3}}{x^3}=5\sqrt{3}x^3+2x+\frac{2\sqrt{3}-1}{x}+\frac{5}{x^2}\)
giả pt: \(\sqrt{\frac{1-x}{x}}=\frac{2x+x^2}{1+x^2}\)
\(\left(\frac{4}{27}+\frac{4}{165}+\frac{4}{285}\right):\left(\frac{5}{84}+\frac{3}{180}+\frac{4}{285}\right)\)
Giải pt:\(\hept{\begin{cases}5|x-3|+\frac{12}{x+y}=\frac{21}{2}\\|3-x|+\frac{1}{x+y}=\frac{7}{4}\end{cases}}\)
GIẢI PT: \(\frac{3}{\sqrt{x}+\sqrt{y}}+\frac{\sqrt{x}}{\sqrt{y}+2}+\frac{\sqrt{y}}{5}+\frac{2}{\sqrt{x}+3}=3\)
giải hệ pt sau
\(\hept{\begin{cases}\frac{2}{x+1}+\frac{1}{y-2}=\frac{1}{3}\\\frac{3}{x+1}+\frac{2}{y-2}=\frac{1}{5}\end{cases}}\)
Giải hệ pt \(\hept{\begin{cases}\frac{x+2}{x+1}+\frac{2}{y-2}=6\\\frac{5}{x+1}-\frac{1}{y-2}=3\end{cases}}\)
giả pt
\(\frac{96}{X-4}-\frac{120}{X+4}=1\)
giải các pt sau
\(\frac{3}{\sqrt{x}+15}=\frac{\sqrt{x}}{5}\)
\(\frac{x+2\sqrt{x}+1}{\sqrt{x}}=\frac{9}{2}\)