cho a/b=c/d, chứng minh rằng:
a. ab/cd = a^2-b^2/ c^2 -d^2
b. 7a-4b/3a+5b=7c-4d/3c+5d
c. ac/bd= a^2+c^2/b^2+d^2= (c-a)^2/(d-b)^2
d. a^3+b^3/c^3+d^3= (a+b)^3/(c+d)^3 với (a/b =c/d khác 1)
phân tik đa thức thành nhân tử
a(b-c)^2+b(a-c)^2+c(a-b)^2- a^3 -b^3 -c^3 +4abc
a, a+b/a-b=c+a/c-a Chứng minh a^2=b.c
b, a/b=b/c=c/d. Chứng minh a^3+b^3+c^3/b^3+c^3+d^3=a/d
Chứng minh rằng nếu:
\(\frac{a^4+b^4}{b^4+c^4}=\frac{2a^2b^2}{2b^2c^2}=\frac{4\left(a^2b^2+a^3.b+b^3.a\right)}{4\left(b^2c^2+b^3.c+c^3.b\right)}\)
thì\(b^2=ca\)
CHO A, B, C LÀ 3 SỐ NGUYÊN DƯƠNG THỎA MÃN a+ b + c+1= 4abc
CHỨNG MINH RẰNG:
\(\frac{1}{a^4+b+c}+\frac{1}{b^4+c+a}+\frac{1}{c^4+a+b}\le\frac{3}{a+b+c}\)
cho a/b = c/d . chứng minh (a + 4c ) (2b -3d) = (b +4d) (2 a-3 c)
Cho b^2 = ac ; c^2 = bd với b, c, d ≠ 0; b+c ≠ 0; b^3+c^3≠ d^3 3. Chứng minh rằng:
a) \(\dfrac{a^3+b^3-c^3}{b^3+c^3-d^3}=\left(\dfrac{a+b-c}{b+c-d}\right)^3\)
b) \(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\)
Cho a/b=c/d Với b/d khác +-3/2 . Chứng minh rằng:
a)2a+3c/2b+3d=2a-3c/2b-3d.
b)a^2+c^2/b^2+d^2=ac/bd
cho a,b,c > 0 thỏa mãn abc = 1. Chứng minh rằng a^3+b^3+c^3 >= a^2 + b^2 + c^2 >= a +b +c >=3