tim dieu kien cua x va y de A khong am
\(A=\left(\frac{x^2-xy}{y=xy}+\frac{x^2-y^2}{x^2+xy}\right):\left(\frac{y^2}{x^3-xy^2}+\frac{1}{x-y}\right)\)
Cho C = \(\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]\left[\frac{x\sqrt{x}+y\sqrt{z}+x\sqrt{y}+y\sqrt{y}}{\sqrt{x^3y}+\sqrt{xy^3}}\right]...\)
a) Rút gọn C
b) Tìm x,y biết xy= \(\frac{1}{16}\)và C = 5
giải hệ phưng trình :
a) \(\hept{\begin{cases}\frac{x+y}{xy}+\frac{xy}{x+y}=\frac{5}{2}\\\frac{x-y}{xy}+\frac{xy}{x-y}=\frac{10}{3}\end{cases}}\)
RÚT GỌN CÁC BIỂU THỨC SAU
\(A=\left(\sqrt{x}+\frac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\left(\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-y}-\frac{x+y}{\sqrt{xy}}\right)\)
\(B=\frac{1+2x}{1+\sqrt{1+2x}}+\frac{1-2x}{1-\sqrt{1-2x}}\)
AI BIẾT LÀM GIÚP MÌNH VỚI
Rút gọn:
a/ \(\frac{\left(\sqrt{x^2+9}-3\right)\left(\sqrt{x^2+9}+3\right)\left(x+\sqrt{xy}+y\right)\sqrt{x-2\sqrt{xy}+y}}{x\left(x\sqrt{x}-y\sqrt{y}\right)}\) (với x>0, y\(\ge\)0, x\(\ne\)y
b/ \(\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right]:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)(với x>0 và x\(\ne\)1
c/ \(\left(\frac{\sqrt{x}+1}{\sqrt{xy}+1}+\frac{\sqrt{xy}+\sqrt{x}}{1-\sqrt{xy}}+1\right):\left(1-\frac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}-\frac{\sqrt{x}+1}{\sqrt{xy}+1}\right)\)(với x>0 và x\(\ne\)1
Rút gọn\(A=\left(\frac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}+\frac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}\right):\left(1+\frac{x+y+2xy}{1-xy}\right)\)
Rút gọn:
\(A=\frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left[\left(\frac{1}{x}+\frac{1}{y}\right).\frac{1}{x+y+2\sqrt{xy}}+\frac{2}{\left(\sqrt{x}+\sqrt{y}\right)^3}.\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\right]\)
\(x=\sqrt{2-\sqrt{3}};y=\sqrt{2+\sqrt{3}}\)
rút gọn biểu thức:
\(A=\frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left[\left(\frac{1}{x}+\frac{1}{y}\right).\frac{1}{x+y+2\sqrt{xy}}+\frac{2}{\left(\sqrt{x}+\sqrt{y}\right)^3}.\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\right]\)
A=\(\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-x}-\frac{x+y}{\sqrt{xy}}\)
rút gọn a
tính a khi x=\(\sqrt{4+2\sqrt{3}}\)
cmr \(\frac{x}{y}=\frac{x+1}{y+5}\)