Ta có : \(\frac{x+y}{7}=\frac{x-y}{5}=\frac{xy}{24}\)
BCNN(7,5,24) = 840
=> \(\frac{120\left(x+y\right)}{840}=\frac{168\left(x-y\right)}{840}=\frac{35xy}{840}\)
=> \(120\left(x+y\right)=168\left(x-y\right)=35xy\)
=> \(\frac{x+y}{\frac{1}{120}}=\frac{x-y}{\frac{1}{168}}=\frac{xy}{\frac{1}{35}}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
+) \(\frac{x+y}{\frac{1}{120}}=\frac{x-y}{\frac{1}{168}}=\frac{\left(x+y\right)+\left(x-y\right)}{\frac{1}{120}+\frac{1}{168}}=\frac{2x}{\frac{1}{70}}=\left(2:\frac{1}{70}\right)x=140x\)
+) \(\frac{x+y}{\frac{1}{120}}=\frac{x-y}{\frac{1}{168}}=\frac{\left(x+y\right)-\left(x-y\right)}{\frac{1}{120}-\frac{1}{168}}=\frac{2y}{\frac{1}{420}}=\left(2:\frac{1}{420}\right)y=840y\)
=> \(140x=840y\) => \(x=6y\)=> \(\frac{x}{6}=\frac{y}{1}\)
Ta có : \(\frac{xy}{24}=1\Rightarrow xy=24\)
Do đó \(\frac{x}{6}=\frac{y}{1}=\frac{xy}{6}=\frac{24}{6}=4\)
Vậy x = 24,y = 4