\(\frac{x+6\sqrt{x}+9}{x-3}\)
\(=\frac{\left(\sqrt{x}+3\right)^2}{x-3}\)
\(\frac{x+6\sqrt{x}+9}{x-3}\)
\(=\frac{\left(\sqrt{x}+3\right)^2}{x-3}\)
\(C=\left(1\cdot \frac{x-3\sqrt{x}}{x-9}\right)chia\left(\frac{\sqrt{x}-3}{2-\sqrt{x}}+\frac{\sqrt{x}-2}{2-\sqrt{x}}+\frac{\sqrt{x}-2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{ }x}-6\right)\)
cái bên trên là \(\frac{9-x}{x+\sqrt{x}-6}\) nha chứ không phải là \(\frac{9-x}{x+\sqrt{x}}-6\)
Rút gọn bt C
A=\(\left(\frac{X-3\sqrt{X}}{X-9}-1\right):\left(\frac{9-X}{X+\sqrt{X}-6}+\frac{\sqrt{X}-3}{\sqrt{X}-2}-\frac{\sqrt{X}-2}{\sqrt{X}+3}\right)\)
Cho biểu thức: \(P=\left(\frac{\sqrt{x}-3}{2-\sqrt{x}}+\frac{\sqrt{x}+2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{x}-6}\right):\left(1-\frac{3\sqrt{x}-9}{x-9}\right)\)
a)Rút gọn biểu thức
b)Tính P với \(x=\frac{\sqrt{4+2\sqrt{3}}\left(\sqrt{x}-1\right)}{\sqrt{6+2\sqrt{5}-\sqrt{5}}}\)
\(\left(\frac{x+3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
RÚT GỌN GIÙM MK VỚI
Rút gọn đa thức:
\(\left(1-\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{\sqrt{x}-3}{2-\sqrt{x}}+\frac{\sqrt{x}-2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{x}+6}\right)\)
1. \(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+3-4\sqrt{x-1}}\left(2< x< 5\right)\)
2. \(\frac{6}{1-\sqrt{3}}-\frac{3\sqrt{3}-1}{\sqrt{3}+1}+\sqrt{3}\)
3. \(\sqrt{29-12\sqrt{5}+\sqrt{24-8\sqrt{3}}}\)
4. \(\sqrt{\frac{4}{9-4\sqrt{5}}}-\sqrt{\frac{4}{9+4\sqrt{5}}}\)
5. \(5\sqrt{\frac{1}{5}}+\frac{1}{2}\sqrt{x}-\frac{5}{4}\sqrt{\frac{4}{5}+\sqrt{5}}\)
6. \(\frac{6-\sqrt{6}}{\sqrt{6}-1}-9\sqrt{\frac{2}{3}}-\frac{4}{2-\sqrt{6}}\)
7. \(\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\frac{\left(\sqrt{x}-1\right)^2}{2}\left(x\ge0,x\ne1\right)\)
\(\frac{\sqrt{x}}{\sqrt{x}+3}-\frac{3}{3-\sqrt{x}}-\frac{6\sqrt{x}}{x-9}\)
\(B=\frac{9-x}{\sqrt{x}+3}-\frac{9-6\sqrt{x}+x}{\sqrt{x}-3}-6\)\(\left(x\ge9\right)\)
Rut gon \(B=\left(1-\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{\sqrt{x}-3}{2-\sqrt{x}}+\frac{\sqrt{x}-2}{\sqrt{2}+3}-\frac{9-x}{x+\sqrt{x-6}}\right)\)
rút gọn
P=\(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
N= \(\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}-\frac{\sqrt{x}-3}{2-\sqrt{x}}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)