\(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\)
Áp dụng ................. :
\(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=\frac{x.y.z}{12.9.5}=\frac{20}{540}=\frac{1}{27}\)
Rồi tự = > x , y , z nha
\(\frac{x}{12}=\frac{1}{27}\)
\(\frac{y}{9}=\frac{1}{27}\)
\(\frac{z}{5}=\frac{1}{27}\)
Ap dụng tính chất các dãy tỉ số bằng nhau, ta có:
x/12=y/9=z/5=xyz/12.9.5=20/540=1/27
=> x=1/27.12=12/27
y=1/27.9=1/3
z=1/27.5=5/27
\(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)
\(\Rightarrow\hept{\begin{cases}x=12k\\y=9k\\z=5k\end{cases}}\)
\(\Rightarrow12k.9k.5k=20\)
\(\Rightarrow540k^3=20\)
\(\Rightarrow k^3=\frac{20}{540}=\frac{1}{27}\)
\(\Rightarrow k=\frac{1}{3}\)
\(\Rightarrow\hept{\begin{cases}x=4\\y=\frac{4}{3}\\z=\frac{12}{5}\end{cases}}\)
Đặt: \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)
\(\Rightarrow x=12k\)
\(y=9k\)
\(z=5k\)
\(\Rightarrow xyz=12k.9k.5k=540k^3=20\Rightarrow k^3=\frac{20}{540}=\frac{1}{27}=\frac{\sqrt[3]{1}}{\sqrt[3]{27}}=\frac{1}{3}\)
\(\Rightarrow x=\frac{1}{3}.12=4\)
\(y=\frac{1}{3}.9=3\)
\(z=\frac{1}{3}.5=\frac{5}{3}\)