Quy đồng từng phân thức theo hệ số của x,y,z tương ứng rồi áp dụng tính chất của dảy tỉ số bằng nhau làm bình thường nha.
\(\frac{x-3}{7}\)= \(\frac{y+2}{3}\)=\(\frac{z-1}{4}\) = \(\frac{3x-9}{21}\)= \(\frac{2y+4}{6}\)= \(\frac{5z-5}{20}\)
=\(\frac{\left(3x+2y-5z\right)+\left(-9+4-5\right)}{21+6-20}\)
=\(\frac{35-10}{7}\)
=\(\frac{25}{7}\)
=>\(\frac{x-3}{7}\)=\(\frac{25}{7}\)=>x =28
\(\frac{y+2}{3}\)=\(\frac{25}{7}\)=>y=\(\frac{61}{7}\)
\(\frac{z-1}{4}\)=\(\frac{25}{7}\)=> z=\(\frac{107}{7}\)