\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3=\left(\frac{a}{b}+\frac{a}{a}\right)+\left(\frac{b}{c}+\frac{b}{b}\right)+\left(\frac{c}{a}+\frac{c}{c}\right)\)
\(=a\left(\frac{1}{a}+\frac{1}{b}\right)+b\left(\frac{1}{b}+\frac{1}{c}\right)+c\left(\frac{1}{c}+\frac{1}{a}\right)\)
\(\ge a.\frac{4}{a+b}+b.\frac{4}{b+c}+c.\frac{4}{c+a}=4\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\right)\)
Dấu "=" <=> a = b = c