\(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{a^2\left(a+2-1\right)}{a\left(a^2+2a+2+1\right)}=\frac{a^2\left(a+1\right)}{a\left(a^2+2a+3\right)}=\frac{a^2+a}{a^2+2a+3}\) (đã rút gọn xong)
nếu a nguyên \(\frac{a^2+a}{a^2+a+a+3}=\frac{1\left(a^2+a\right)}{a+3\left(a^2+a\right)}=\frac{1}{a+3}\)=> tối giản