\(\frac{9^3\cdot2^{10}\cdot27^5}{4^5\cdot81^6}=\frac{3^6\cdot2^{10}\cdot3^{15}}{2^{10}\cdot3^{24}}=\frac{1}{3^3}=\frac{1}{27}\)
\(\frac{27^4\cdot2^5-3^{11}\cdot4^3}{8^2\cdot9^6}=\frac{3^{12}\cdot2^5}{2^6\cdot3^{12}}-\frac{3^{11}\cdot2^6}{2^6\cdot3^{12}}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)
=))
a) \(\frac{9^3.2^{10}.27^5}{4^5.81^6}\)= \(\frac{\left(3^2\right)^3.2^{10}.\left(3^3\right)^5}{\left(2^2\right)^5.\left(3^4\right)^5}\)= \(\frac{3^{2.3}.2^{10}.3^{3.5}}{2^{2.5}.3^{4.5}}\)= \(\frac{3^6.2^{10}.3^{15}}{2^{10}.3^{20}}\)= \(\frac{3^{21}.2^{10}}{2^{10}.3^{20}}\)= \(\frac{3^{20}.2^{10}.3}{2^{10}.3^{20}}\)= \(3\)
\(a,\frac{9^3\cdot2^{10}\cdot27^5}{4^5\cdot81^6}\)
\(=\frac{\left[3^2\right]^3\cdot\left[2^2\right]^5\cdot\left[3^3\right]^5}{\left[2^2\right]^5\cdot\left[3^4\right]^6}\)
\(=\frac{3^6\cdot2^{10}\cdot3^{15}}{2^{10}\cdot3^{24}}=\frac{3^6\cdot3^{15}}{3^{24}}=\frac{3^{21}}{3^{24}}=3^{21-24}=3^{-3}=\frac{1}{27}\)
b, Như bạnThảo Nguyễn 緑