\(\frac{7^{7^{7^7}}-7^{7^{7^7}}}{100}=\frac{0}{100}=0\left(dư100\right)\)
Nhầm dư 0(0/ số nào cũng =0)
\(\frac{7^{7^{7^7}}-7^{7^{7^7}}}{100}=\frac{0}{100}=0\left(dư100\right)\)
Nhầm dư 0(0/ số nào cũng =0)
CMR \(\frac{1}{7}+\frac{2}{7^2}+\frac{3}{7^3}+...+\frac{100}{7^{100}}< \frac{7}{36}\)
Tính \(A=\left(36-\frac{36}{7^{100}}\right):\left(\frac{1}{7^1}+\frac{1}{7^2}+...+\frac{1}{7^{99}}+\frac{1}{7^{100}}\right)\)
Cho \(A=7+7^2+7^3+7^4+...+7^{99}\)
a) So sánh A với \(\frac{7^{100}}{6}\)
b) Chứng minh rằng A chia hết cho 19
c) Tìm chữ số tận cùng của A
Mình cần gấp !
Chứng minh rằng : \(\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{4n-2}}-\frac{1}{7^{4n}}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}< \frac{1}{50}\)
\(A=(\frac{1}{7^2}+\frac{1}{7^4}+\frac{1}{7^6}+...+\frac{1}{7^{100}})\div(1-\frac{1}{7^{100}})\)Mình đag cần rất gấp . Mong mn giúp mình với
Ai làm nhanh mình tick
chứng minh rằng : \(\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-...+\frac{1}{7^{98}}-\frac{1}{7^{100}}< \frac{1}{50}\)
CMR :
\(\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-\frac{1}{7^8}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)< \(\frac{1}{50}\)
cho \(A=\frac{1}{7^2}-\frac{1}{7^4}+....+\frac{1}{7^{4n-2}}-\frac{1}{7^{4n}}+....+\)\(\frac{1}{7^{100}}\)
Cho \(A=1+7+7^2+7^3+...+7^{2019}+7^{2020}\)
Tìm số dư khi chia A cho 19.