\(=\frac{\sqrt{6}\left(\sqrt{6}-1\right)}{\sqrt{6}-1}+\frac{\sqrt{6}\left(\sqrt{6}+1\right)}{\sqrt{6}}=\sqrt{6}+\sqrt{6}+1=2\sqrt{6}+1\)
\(\frac{6-\sqrt{6}}{\sqrt{6-1}}\)+ \(\frac{6+\sqrt{6}}{\sqrt{6}}\) = \(\frac{-\sqrt{30}+6\sqrt{5}}{5}\) + \(1+\sqrt{6}\) = \(\frac{\sqrt{6}\left(\sqrt{6-1}\right)}{\sqrt{6-1}}\) + \(\frac{\sqrt{6}\left(\sqrt{6-1}\right)}{\sqrt{6}}\) = \(\sqrt{6}+\sqrt{6}+1=2\sqrt{6+1}\)