Tính bằng cách hợp lí:
a/ \(\left(1+\frac{1}{3}\right)x\left(1+\frac{1}{8}\right)x\left(1+\frac{1}{15}\right)x...x\left(1+\frac{1}{9999}\right)\)
b/ \(\left(1-\frac{1}{4}\right)x\left(1-\frac{1}{9}\right)x\left(1-\frac{1}{16}\right)x...x\left(1-\frac{1}{10000}\right)\)
Nhớ giải giúp mình nhé!
tìm x
\(\left(x+\frac{1}{2\cdot4}\right)+\left(x+\frac{1}{4\cdot6}\right)+\left(x+\frac{1}{6\cdot8}\right)+\left(x+\frac{1}{8\cdot10}\right)+\left(x+\frac{1}{10\cdot12}\right)=50\frac{5}{24}\)
tìm x biết: \(2009-\left(4\frac{5}{9}+x-7\frac{7}{8}\right):15\frac{3}{2}=2008\)
M=\(\left(1-\frac{1}{3}\right)x\left(1-\frac{1}{6}\right)x\left(1-\frac{1}{10}\right)x\left(1-\frac{1}{15}\right)x\left(1-\frac{1}{21}\right)x\left(1-\frac{1}{28}\right)\)
\(A=\left(6:\frac{3}{5}-1\frac{1}{6}x\frac{6}{7}\right):\left(4\frac{1}{5}x\frac{10}{11}+5\frac{2}{11}\right)\)\(B=\left(1-\frac{1}{2}\right)x\left(1-\frac{1}{4}\right)x.......x\left(1-\frac{1}{2015}\right)x\left(1-\frac{1}{2016}\right)\)
\(C=5\frac{9}{10}:\frac{3}{2}-\left(2\frac{1}{3}x4\frac{1}{2}-2x2\frac{1}{3}\right):\frac{7}{4}\)
a)\(\left(1-\frac{1}{2}\right)x\left(1-\frac{1}{3}\right)x\left(1-\frac{1}{4}\right)x\left(1-\frac{1}{5}\right)x......x\left(1-\frac{1}{18}\right)x\left(1-\frac{1}{19}\right)x\left(1-\frac{1}{20}\right)\)
b)\(1\frac{1}{2}x1\frac{1}{3}x1\frac{1}{4}x1\frac{1}{5}x......x1\frac{1}{2005}x1\frac{1}{2006}x1\frac{1}{2007}\)
Tĩm x:
1,\(\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}=\frac{1}{x+5}\)
2,\(\left(x+\frac{1}{1.3}\right)+\left(x+\frac{1}{3.5}+......+x+\frac{1}{23.25}\right)=11.x+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)
Giải chi tiết hộ mình nha mình tik cho
Tính nhanh:
\(B=\left(1+\frac{1}{8}\right)\)x \(\left(1+\frac{1}{15}\right)\)x \(\left(1+\frac{1}{24}\right)\)x........ x \(\left(1+\frac{1}{440}\right)\)x \(\left(1+\frac{1}{483}\right)\)
x-\(\left(\frac{20}{11.13}+\frac{20}{13.15}+\frac{20}{15.17}+...+\frac{20}{53.55}\right)=\frac{3}{11}\)
\(\frac{7}{4}x.\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)=22\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{2}{x\left(x-1\right)}=\frac{2007}{2009}\)
\(\left(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\right).x=1\)