\(\frac{3}{2.4}+\frac{3}{4.6}+....+\frac{3}{98.100}\)
\(=\frac{3}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{98.100}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{98}-\frac{1}{100}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(=\frac{3}{2}.\frac{49}{100}=\frac{147}{200}\)
\(\frac{3}{2.4}+\frac{3}{4.6}+\frac{3}{6.8}+...+\frac{3}{98.100}\)
\(=\frac{3}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+....+\frac{2}{98.100}\right)\)
\(=\frac{3}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+....+\frac{1}{98}-\frac{1}{100}\right)\)
\(=\frac{3}{2}\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(=\frac{3}{2}.\frac{49}{100}=\frac{147}{200}\)
Đặt \(A=\frac{3}{2.4}+\frac{3}{4.6}+\frac{3}{6.8}+...+\frac{3}{98.100}\)
\(A=\frac{3}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{98.100}\right)\)
\(A=\frac{3}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(A=\frac{3}{2}\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(A=\frac{3}{2}.\frac{49}{100}\)
\(A=\frac{147}{200}\)
Vậy \(A=\frac{147}{200}\)
Chúc bạn học tốt ~
\(\frac{3}{2.4}+\frac{3}{4.6}+\frac{3}{6.8}+...+\frac{3}{98.100}\)
= \(\frac{3}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)
= \(\frac{3}{2}.\left(\frac{1}{2}-\frac{1}{100}\right)\)
= \(\frac{3}{2}.\frac{49}{100}=\frac{147}{200}\)
~~~
#Sunrise