\(\frac{3^2.3^8}{27^3}=3^x\)
\(\Leftrightarrow\frac{3^{2+8}}{\left(3^3\right)^3}=3^x\)
\(\Leftrightarrow\frac{3^{10}}{3^9}=3^x\)
\(\Leftrightarrow3=3^x\)
\(\Leftrightarrow x=1\)
\(\frac{3^2.3^8}{27^3}=3^x\)
<=> \(\frac{3^{10}}{3^9}=3^x\)
<=> \(3=3^x\)
<=> x=1
\(\frac{3^2\cdot3^8}{27^3}=3^x\)
\(\Leftrightarrow3^2\cdot3^8=27^3\cdot3^x\)
\(\Leftrightarrow3^{10}=\left(3^3\right)^3\cdot3^x\)
\(\Leftrightarrow3^{10}=3^9\cdot3^x\)
\(\Leftrightarrow3^{10}=3^{9+x}\)
\(\Rightarrow10=9+x\)
\(\Leftrightarrow x=1\)
\(\frac{3^2.3^8}{27^3}=3^x\)
\(\Leftrightarrow\frac{3^{10}}{3^9}=3^x\)
\(\Leftrightarrow3=3^x\)
\(\Leftrightarrow x=1\)