Tính tổng
\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{100}\)
\(B=\frac{2}{3}+\frac{3}{4}+\frac{4}{5}+...+\frac{2015}{2016}\)
Cho biểu thức sau: \(P=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+\frac{4}{5^4}+.....+\frac{2015}{5^{2015}}+\frac{2016}{5^{2016}}\)
Chứng minh 1/4 < P< 1/3
A=5^2016+4/5^2015+4 B =\(\frac{5^{2014}+4}{5^{2013}+4}\)
A=\(\frac{3^{98}-1}{3^{100}-1}\)b=\(\frac{3^{98}-1}{3^{100}-1}\)
Gửi bạn ... nè :
B=1/1*3+1/3*5/+1/5*7+....+1/2015*2016
\(B=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2015.2016}\)
\(B=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+...+\frac{1}{2015}-\frac{1}{2016}\right)\)
\(B=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{2016}\right)\)
\(B=\frac{1}{2}.\frac{2015}{2016}\)
\(B=\frac{2015}{4032}\)
a)Chứng minh rằng: \(\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+..+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}}=2\)
b)\(A=\frac{-21}{10^{2016}}+\frac{-12}{10^{2017}};B=\frac{-12}{10^{2016}}+\frac{-21}{10^{2017}}\)
So sánh A và B
\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2017}}\)
chứng tỏ A<1
2,
\(S=2+2^2+2^3+...+2^{99}\)
C/t: S chia hết cho 7, 31
3,
\(A=1+5+5^2+5^3+5^4+5^5+...+5^{99}+5^{100}\)
Tính A
4,
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}\)<1
5,
CHỨNG tỏ rằng các p/s tối giản vs mọi số tự nhiên n
a,\(\frac{n+1}{2n+3}\)b,\(\frac{2n+3}{4n+8}\)
6,
a,TÍnh A và B
A=\(\frac{2016^{2016}+2}{2016^{1016}-1}\)B=\(\frac{2016^{2016}}{2016^{2016}-3}\)
b, tính
C=\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{9900}\)
LÀm NHANH Hộ MK ,MAi mk Phải Nộp.
\(\left(\frac{1}{2}+\frac{2015}{2016}+\frac{2016}{2017}+1\right)\left(\frac{2105}{2016}+\frac{2016}{2017}+\frac{7}{22}\right)-\left(\frac{1}{2}+\frac{2015}{2016}+\frac{2016}{2017}\right)\left(\frac{2015}{2016}+\frac{2016}{2017}+\frac{7}{22}+1\right)\)
So sánh 2 phân số sau\(\frac{2014+2015+2016}{2015+2016+2017}\) và \(\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2017}\)
Cho phân số \(A=\frac{n+1}{n-3}\) Với (n thuộc Z, n khác 3).Tìm n để A nhỏ hơn 0.Tính giá trị của A khi: N=\(\frac{8^2.9^3}{6^5}\)+ \(\frac{2015^4+2015^5}{2015^3+2015^4}\) -\(\frac{2016^4-2016^8}{2016^6-2016^7}\)