a/b=c/d
=>a/c=b/d
Đặt a/c=b/d=k (k khác 0)
=> a=k.c
b=k.d
2a+b/2a-b=2.k.c+k.d/2.k.c-k.d
=k.(2c+d)/k.(2c-d)
=2c+d/2c-d
=>ĐPCM
a/b=c/d
=>a/c=b/d
Đặt a/c=b/d=k (k khác 0)
=> a=k.c
b=k.d
2a+b/2a-b=2.k.c+k.d/2.k.c-k.d
=k.(2c+d)/k.(2c-d)
=2c+d/2c-d
=>ĐPCM
cho \(\frac{a}{b}\)=\(\frac{c}{d}\)
Chứng minh: a) \(\frac{2a+b}{b}\)=\(\frac{2c+d}{d}\)
b) \(\frac{2a-3b}{2a+3b}\)=\(\frac{2c-3d}{2c+3d}\)
cho \(\frac{a}{b}=\frac{c}{d}\)chứng minh
\(\frac{2a-3b}{2a+3b}=\frac{2c-3d}{2c+3d}\)
a, \(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)
b, \(\frac{a^2.b^2}{c^2.d^2}=\frac{a^4+b^4-2a^2.b^2}{c^4+d^4-2c^2.d^2}\)
a, \(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)
b, \(\frac{a^2.b^2}{c^2.d^2}=\frac{a^4+b^4-2a^2b^2}{c^4+d^4-2c^2d^2}\)
Cho tỉ lệ thức : \(\frac{a}{b}=\frac{c}{d}\) . Chứng minh
\(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)
Cho \(\frac{a}{b}=\frac{c}{d}.\)Chứng minh rằng \(\frac{a}{2a-b}=\frac{c}{2c-d}\)
Cho :\(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)
Chứng Minh Rằng:\(\frac{a}{b}=\frac{c}{d}\)
Cho:\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\)
Tính: P\(\frac{2a-b}{2c-d}+\frac{2b-c}{2d-a}+\frac{2c-d}{2a-b}+\frac{2d-a}{2b-c}\)
Giúp với ai nhanh mình tick cho.
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng ta có các tỉ lệ thức sau:
a)\(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)
b)\(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-b^2}\)
c)\(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)