\(\frac{25}{5^x}=\frac{1}{125}\Rightarrow25.125=5^x.1\)
\(3125=5^x\)
\(5^5=5^x\)
\(\Rightarrow x=5\)
25/5^x=25/5^5
2^8+2^2+3=288
(2x-1)^4=3^4
2x-1=3
2x=4
x=2
\(a,\frac{25}{5^x}=\frac{1}{125}\Rightarrow\frac{5^2}{5^x}=5^{-3}\Rightarrow5^{2-x}=5^{-3}\Rightarrow2-x=-3\Rightarrow x=5\)
b, \(2^x+2^{x+3}=288\Rightarrow2^x+2^x.2^3=288\Rightarrow2^x\left(1+8\right)=288\Rightarrow2^x.9=288\Rightarrow2^x=32=2^5\Rightarrow x=5\)
c, \(\left(2x-1\right)^4=81\Rightarrow\left(2x-1\right)^4=3^4\Rightarrow2x-1=3\Rightarrow2x=4\Rightarrow x=2\)