$A=\frac{2011}{1.2}+\frac{2011}{3.4}+\frac{2011}{5.6}+...+\frac{2011}{1999.2000}$
$B=\frac{2012}{1001}+\frac{2012}{1002}+\frac{2012}{1003}+...\frac{2012}{2000}$
1. Tinh a \(\left(6^9.2^{10}+12^{10}\right)+\left(2^{19}.27^3+15.4^9.9^4\right)\)
2. So sanh A va B.
a) \(A=\frac{-2012}{4025};B=\frac{-1999}{3997}\)
b) \(A=3^{21};B=2^{31}\)
c) \(A=\frac{2011}{1.2}+\frac{2011}{3.4}+\frac{2011}{5.6}+....+\frac{2011}{1999.2000};\)\(B=\frac{2012}{1001}+\frac{2012}{1002}+\frac{2012}{1003}+....+\frac{2012}{2000}\)
So sánh A và B trong những trường hợp sau:
a) A = \(\frac{-2012}{4025}\); B = \(\frac{-1999}{3997}\)
b) A = \(\frac{2011}{1.2}+\frac{2011}{3.4}+...+\frac{2011}{1999.2000}\); B = \(\frac{2012}{1001}+\frac{2012}{1002}+...+\frac{2012}{2000}\)
Cho \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)và \(B=\frac{2011}{51}+\frac{2011}{52}+\frac{2011}{53}+...+\frac{2011}{100}\)
Chứng minh rằng \(\frac{B}{A}\)là một số nguyên
Cho A = \(\frac{1}{1.2}\) + \(\frac{1}{3.4}\) + \(\frac{1}{5.6}\) +...+\(\frac{1}{99.100}\) & B = \(\frac{2011}{51} \) + \(\frac{2011}{52}\) + \(\frac{2011}{53} +...+\frac{2011}{100}\)
Chứng minh rằng \(\frac{A}{B}\) là một số nguyên
A=2011/1.2+2011/3.4+2011/4.5+...+2011/1999.2000
B=2012/1001+2012/1002+2012/1003+...+2012/2000
So sánh A và B
Giúp Mk cho tick lun Thx
So sánh A với B:
a:A=-2012/4025;B=-1999/3997
b:A=2011/1.2+2011/3.4+.....+2011/1999.2000; B=2012/1001+2012+1002+...+2012/2000
Cho A = 1/(1.2) +1/(3.4) +1/(5.6) +....+1/(99.100)
B= 2011/51 +2011/52+ 2011/53 +...+2011/100
CM: B/A là số nguyên
so sánh A = 2011/1.2 +2011/3.4 +...+2011/1999.2000 ; B = 2012/1001 +2012/1002 +...+2012/2000