Cho các số thực a,b,c thỏa mãn:
\(a^2+b^2+c^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=6\)
Tính giá trị của bt \(B=a^{2020}+b^{2020}+c^{2020}\)
cho bt B= \(\frac{5}{x-3}-\frac{x-2}{x^2-9}+\frac{x-1}{2x+6}\)
a, rút gọn
b, tính giá trị của bt b biết giá trị tuyệt đối x-2=1
c, tìm x để b<0
\(Cho \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0 Tính giá trị biểu thức sau A = \frac{a^{2}}{a^{2}+2bc} + \frac{b^{2}}{b^{2}+2ac} + \frac{c^{2}}{c^{2}+2ab}\)
Cho a,b,c khác 0\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\), Tính giá trị biểu thức A= \(\frac{a^2+bc}{a^2+2bc}+\frac{b^2+ca}{b^2+2ca}+\frac{c^2+ab}{c^2+2ab}\)
Cho 3 số dương a,b,c thỏa mãn a+b+c = 1/2 và a^2+b^2+c^2+ab+bc+ca =1/6. tính giá trị BT : P = \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
Cho a,b,c thỏa mãn \(\frac{a^3}{a^{^2}+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+a^2}=1006\).Tính giá trị của biểu thức \(M=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)
Cho \(S=1.2.3+2.3.4+3.4.5+...+n\left(n+1\right)\left(n+2\right)\). CMR \(4S+1\)là số chính phương
CHO A+B+C=0
TÍNH GIÁ TRỊ BIỂU THỨC
\(\frac{1}{B^2+C^2-A^2}+\frac{1}{A^2+C^2-B^2}+\frac{1}{A^2+B^2-C^2}\)
CẦN GẤP LẮM HÔ VỚI MNG
Cho ba số a,b,c khác 0 thảo mãn :a+b+c=0. Tính giá trị biểu thức :
P= \(\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}\)
cho a,b,c là các số thực khác 0 và thỏa mãn ab+bc+ca=1.
Tính giá trị của biểu thức: M=\(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}-\frac{2}{\left(a-b\right)\left(b+c\right)\left(c+a\right)}\)
Cho abc=8 và \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{3}{4}\)(a,b,c>0). Tính giá trị của: \(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\)