Đặt biểu thức đó là A
=> 2A = \(\frac{2}{9.11}+\frac{2}{11.13}+...+\frac{2}{61.63}=\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+...+\frac{1}{61}-\frac{1}{63}\)
\(=\frac{1}{9}-\frac{1}{63}=\frac{2}{21}\)
=> A = \(\frac{2}{21}.\frac{1}{2}=\frac{1}{21}\)
tớ biết ngay làm cũng ko ai chọn nên chỉ đưa ra kết quả thôi
\(\frac{1}{9.11}+\frac{1}{11.13}+\frac{1}{13.15}+.....+\frac{1}{61.63}=\frac{1}{2}\cdot\left(\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+...+\frac{1}{61}-\frac{1}{63}\right)=\frac{1}{2}\cdot\left(\frac{1}{9}-\frac{1}{63}\right)=\frac{1}{2}\cdot\frac{6}{63}=\frac{3}{63}=\frac{1}{21}\)
\(=\frac{1}{2}\left(\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+....+\frac{1}{61}-\frac{1}{63}\right)\)
\(=\frac{1}{2}\left(\frac{1}{9}-\frac{1}{63}\right)=\frac{1}{2}\cdot\frac{2}{21}=\frac{1}{21}\)