\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{2}{x\left(x+1\right)}=1\frac{2011}{2012}\)
Tìm x biết:
\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}\right)\cdot x=\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{2}{2011}+\frac{1}{2012}\)
Tìm x thuộc N, biết: \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2011}{2012}\)
Tìm x biết:
a) \(^{2^x+2^{x+1}+2^{x+2}+2^{x+3}=480}\)
b) \(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}\right).x=\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{2}{2011}+\frac{1}{2012}\)
Bài 3 : a) Tính
\(\frac{\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{5}{6}\right)\cdot230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{10}+\frac{10}{3}\right):\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
b) Tính :
\(P=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+\frac{1}{2011}}\)
Bài \(1:\)TÌM \(x:\)
\(a,\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{2013}\)
\(b,\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(c,\frac{x+5}{205}+\frac{x+4}{204}+\frac{x+3}{203}=\frac{x+166}{366}+\frac{x+167}{367}+\frac{x+168}{368}\)
\(d,\) \(x.\)\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}}{\frac{2011}{1}+\frac{2011}{2}+\frac{2010}{3}+\frac{2009}{4}+...+\frac{2}{2011}+\frac{1}{2012}}=1\)
Thực hiện phép tính:
a) \(\left(\frac{1}{3}-1\right).\left(\frac{1}{6}-1\right).\left(\frac{1}{10}-1\right).\left(\frac{1}{15}-1\right)...\left(\frac{1}{1225}-1\right).\left(\frac{1}{1275}-1\right)\)
b) 1 - 2 + 3 - 4 + 5 - 6 + ... + 2011 - 2012
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2011}{2013}\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x.\left(x+1\right):2}=\frac{2009}{2011}\)