Ta có :
\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)
\(=\)\(\frac{1}{2}\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{2499}\right)\) ( bước này hơi khó hiểu tí nhé )
\(=\)\(\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\) ( phân tích mẫu )
\(=\)\(\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\) ( áp dụng công thức thoi )
\(=\)\(\frac{1}{2}\left(1-\frac{1}{51}\right)\) ( loại bỏ nhưng phân số đối nhau )
\(=\)\(\frac{1}{2}.\frac{50}{51}\)
\(=\)\(\frac{25}{51}\)
Chúc bạn học tốt ~
ĐẶT \(A\)\(=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{49\cdot51}\)
\(2.A=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{49\cdot51}\)
\(2.A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)
\(2.A=1-\frac{1}{51}\)
\(2.A=\frac{50}{51}\)
\(\Rightarrow A=\frac{50}{51}\div2=\frac{25}{51}\)
=>\(=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)
=>\(2=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\) ( nhân 2 lần nhé)
=>2=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)
\(\Rightarrow2=1-\frac{1}{51}\)
=> 2=50/51
=50/51:2
=25/51
mk ko biết cách trình bày thông cảm nha.