\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+......+\frac{1}{????}\)
sai đề
\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+......+\frac{1}{????}\)
sai đề
\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+..+\frac{1}{100^2}=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)
Có \(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\) \(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)....v........v............ \(\frac{1}{50^2}< \frac{1}{49.50}=\frac{1}{49}-\frac{1}{50}\)
Cộng lại \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=2-\frac{1}{50}\)
\(\Rightarrow VT< \frac{1}{2^2}\left(2-\frac{1}{50}\right)=\frac{1}{2}-\frac{1}{2^2.50}< \frac{1}{2}\left(Đpcm\right)\)
e,\(A=\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+\left(1-\frac{1}{20}\right)+\left(1-\frac{1}{20}\right)+\left(1-\frac{1}{42}\right)\)
\(\Rightarrow A=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+1-\frac{1}{30}+1-\frac{1}{42}=4-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)
\(\Rightarrow A=4-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)=4-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(\Rightarrow A=4-\left(\frac{1}{1}-\frac{1}{7}\right)=4-\frac{6}{7}=3\frac{1}{7}\)
Bai 1: Tinh
a) ( \(\frac{1}{3}\))-1 - (\(\frac{-6}{7}\))0 + ( \(\frac{1}{2}\))-2 . 2
b) \(\frac{2.5^{22}-9.5^{21}}{25^{10}}\): \(\frac{5.\left(3.7^{15}-19.7^{14}\right)}{7^{16}+3.7^{15}}\)
c) ( \(\frac{-4}{9}\))3. (\(\frac{3}{2}\))2. (\(\frac{9}{6}\))3
a,\(8x^3-12x^2+6x-5=0\Leftrightarrow8\left(x^3-\frac{3}{2}x^2+\frac{3}{4}x-\frac{1}{8}\right)-4=0\)
\(\Leftrightarrow8\left(x-\frac{1}{2}\right)^3=4\Leftrightarrow\left(x-\frac{1}{2}\right)^3=\frac{1}{2}\Leftrightarrow x=\frac{1}{\sqrt[3]{2}}+\frac{1}{2}\)
\(VT=a+b+\frac{1}{a}+\frac{1}{b}=\left(a+\frac{1}{2a}\right)+\left(b+\frac{1}{2b}\right)+\frac{1}{2a}+\frac{1}{2b}\)
để ý \(1=a^2+b^2\ge2ab\Leftrightarrow ab\le\frac{1}{2}\)
\(\frac{1}{2a}+\frac{1}{2b}\ge2\sqrt{\frac{1}{4ab}}\ge2\sqrt{\frac{1}{2}}\)
\(a+\frac{1}{2a}\ge2\sqrt{\frac{1}{2}}\)
\(b+\frac{1}{2b}\ge2\sqrt{\frac{1}{2}}\)
+ 3 vế thì ta được \(VT\ge6\sqrt{\frac{1}{2}}\) dấu = khi \(\frac{1}{2a}=\frac{1}{2b}....a=\frac{1}{2a}....b=\frac{1}{2b}\)
tính nhanh phân số:
\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+......=\frac{1}{1+2+3+.....+50}\)
Điền số tiếp theo vào chỗ chấm.
\(\frac{1}{3};\frac{1}{7};\frac{1}{13};\frac{1}{21};\frac{1}{31};\frac{1}{43};........\)
\(\frac{9}{15}X\frac{12}{1}X\frac{5}{6}\)
ta có \(A=\frac{1}{x^3+y^3}+\frac{4}{xy}=\frac{1}{\left(x+y\right)\left(x^2-xy+y^2\right)}+\frac{4}{xy}=\frac{1}{x^2-xy+y^2}+\frac{1}{xy}+\frac{1}{xy}+\frac{1}{xy}+\frac{1}{xy}\)
áp dụng bất đẳng thức svác sơ ta có
\(\frac{1}{x^2-xy+y^2}+\frac{1}{xy}+\frac{1}{xy}+\frac{1}{xy}\ge\frac{16}{x^2+y^2+2xy}=16\)
mà \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
=> \(\frac{1}{xy}\ge4\)
=> \(A\ge20\)
dấu = xảy ra <=> x=y=1/2