\(\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{13\cdot15}\)
\(=\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{13\cdot15}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{13}-\frac{1}{15}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{15}\right)\)
\(=\frac{1}{2}\cdot\frac{4}{15}\)
\(=\frac{2}{15}\)
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{13.15}\)
\(=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{1}{13.15}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{15}\right)\)
\(=\frac{1}{2}.\)4/15
=2/15
Gọi \(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{13\cdot15}\)
=>\(2A=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{13\cdot15}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{13}-\frac{1}{15}\)
\(=\frac{1}{3}-\frac{1}{15}\)
\(=\frac{5}{15}-\frac{1}{15}\)
\(=\frac{4}{15}\)
Mà A = 2A : 2
=>\(A=\frac{4}{15}:2\)
\(=\frac{4}{15}\cdot\frac{1}{2}\)
\(=\frac{4}{30}=\frac{2}{15}\)