Chứng minh rằng \(\frac{1.3.5...39}{21.22.23...40}=\frac{1}{2^{20}}\)
Chứng minh rằng: \(\frac{1.3.5...39}{21.22.23...40}=\frac{1}{2^{20}}\)
Chứng minh rằng: \(\frac{1.3.5.....39}{21.22.23.....40}=\frac{1}{2^{20}}\)
Chứng tỏ rằng: \(\frac{1.3.5.....39}{21.22.23.....40}=\frac{1}{2^{20}}\)
Các bạn giúp mk với, mk sẽ ủng hộ.
CMR:
\(\frac{1.3.5..........39}{21.22.23...40}=\frac{1}{2^{20}}\)
Dấu . là nhân,mong các bạn giúp đỡ
Chứng minh rằng:
a) \(\frac{1.3.5...39}{21.22.23...40}=\frac{1}{2^{20}}\)
b)\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)...2n}=\frac{1}{2^n}\)
Chứng minh rằng:
a)\(\frac{1.3.5...39}{21.22.23...40}=\frac{1}{2^{20}}\)
b)\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n}=\frac{1}{2^n}\)với n thuộc N*
C/m rằng
\(\frac{1.3.5......39}{21.22.23...40}=\frac{1}{2^{10}}\)
1)CMR:
a) \(\frac{1.3.5...39}{21.22.23...40}=\frac{1}{2^{20}}\)
b) \(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right).\left(n+2\right)\left(n+3\right)...2n}=\frac{1}{2^n}\)( n thuộc N* )