\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}\)
\(=\frac{2}{5}\)
\(\frac{1}{1x2}+\frac{1}{2x3}+...+\frac{1}{9x10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
\(\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{9x10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}\)
\(=\frac{2}{5}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{1}-\frac{1}{10}\)
\(=\frac{9}{10}\)
\(\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+.....+\frac{1}{9x10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}\)
\(=\frac{5}{10}-\frac{1}{10}\)
\(=\frac{4}{10}=\frac{2}{5}\)
\(\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+....+\frac{1}{9x10}\)
= \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{9}-\frac{1}{10}\)
= \(\frac{1}{2}-\frac{1}{10}\)
= \(\frac{5}{10}-\frac{1}{10}\)
= \(\frac{4}{10}\)
= \(\frac{2}{5}\)
\(\frac{1}{2\cdot3}\)+ \(\frac{1}{3\cdot4}\)+ \(\frac{1}{4\cdot5}\)+ ... + \(\frac{1}{9\cdot10}\)
= \(\frac{1}{2}\)- \(\frac{1}{3}\)+ \(\frac{1}{3}\)- \(\frac{1}{4}\)- \(\frac{1}{5}\)+ ... + \(\frac{1}{9}\)- \(\frac{1}{10}\)
= \(\frac{1}{2}\)- \(\frac{1}{10}\)
= \(\frac{8}{20}\)= \(\frac{2}{5}\)
\(\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{9x10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...-\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}=?\)
\(=\frac{5}{10}-\frac{1}{10}=?\)
\(=\frac{4}{10}=\frac{2}{3}.\)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}\)
\(=\frac{4}{10}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}\)
\(=\frac{2}{5}\)
\(\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{9x10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}\)
\(=\frac{5}{10}-\frac{1}{10}\)
\(=\frac{4}{10}\)
\(=\frac{2}{5}\)