Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Namikaze Minato

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9702}+\frac{1}{9900}\)

chúc bạn làm tốt !

Huỳnh Bá Nhật Minh
31 tháng 5 2018 lúc 18:28

\(\frac{1}{2}+\frac{1}{6}\)\(+\frac{1}{12}\)\(+...+\frac{1}{9702}\)\(+\frac{1}{9900}\)

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}\)\(+...+\frac{1}{98\cdot99}\)\(\frac{1}{99\cdot100}\)

\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\)\(\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(\frac{1}{1}-\frac{1}{100}\)

\(\frac{100}{100}\)\(\frac{1}{100}\)

\(\frac{99}{100}\)

I don
31 tháng 5 2018 lúc 17:29

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9702}+\frac{1}{9900}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

Trần Thanh Phương
31 tháng 5 2018 lúc 17:32

Gọi dãy trên là A

\(\Leftrightarrow A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\)

\(\Leftrightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Leftrightarrow A=1-\frac{1}{100}+0+...+0\)

\(\Leftrightarrow A=\frac{99}{100}\)

Namikaze Minato
31 tháng 5 2018 lúc 17:43

\(S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9702}+\frac{1}{9900}\)

\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(S=1-\frac{1}{100}\)

\(S=\frac{99}{100}\)

phạm bảo chi
31 tháng 5 2018 lúc 20:10

1/2+1/6+1/12+.....+1/9072+1/9900

=1/1.2+1/2.3+1/3.4+...+1/98.99+1/99.100

=1/1-1/2+1/2-1/3+1/3-1/4+.....+1/98-1/99+1/99-1/100

=1/1-1/100

=99/100

kudo shinichi
2 tháng 6 2018 lúc 6:24

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9702}+\frac{1}{9900}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

Đặng Tuấn Anh
29 tháng 6 2018 lúc 8:06

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{100}=\frac{99}{100}\)


Các câu hỏi tương tự
Lâm Văn Trúc
Xem chi tiết
Lê Hoàng Tiến Đạt
Xem chi tiết
Âu Dương Na Na
Xem chi tiết
Đinh Đức Hùng
Xem chi tiết
HALETHUONG
Xem chi tiết
BBoy Công Nghệ
Xem chi tiết
Trần Cao Vỹ Lượng
Xem chi tiết
Đông joker
Xem chi tiết
Akali
Xem chi tiết