\(\frac{1}{2}=a\cdot\left(-\sqrt{2}\right)^2\)
\(\frac{1}{2}=a\cdot2\)
\(a=\frac{1}{2}:2=\frac{1}{4}\)
\(\frac{1}{2}=a\cdot\left(-\sqrt{2}\right)^2\)
\(\frac{1}{2}=a\cdot2\)
\(a=\frac{1}{2}:2=\frac{1}{4}\)
Chứng minh: \(\frac{1}{2\cdot\sqrt{1}}+\frac{1}{3\cdot\sqrt{2}}+\frac{1}{4\cdot\sqrt{3}}+...+\frac{1}{2012\cdot\sqrt{2011}}+\frac{1}{2013\cdot\sqrt{2012}}\)\(< 2\)
Chứng minh: A=\(\frac{1}{3\cdot\left(\sqrt{1}+\sqrt{2}\right)}+\frac{1}{5\cdot\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{97\cdot\left(\sqrt{48}+\sqrt{49}\right)}\)\(< \frac{1}{2}\)
Cho mk hỏi con này ra bao nhiu z: \(A=\frac{\left(\sqrt{x}+2\right)\cdot\left(x-1\right)-\left(\sqrt{x}-2\right)\cdot\left(x+1\right)\cdot\left(x+1\right)}{\left(x+1\right)^2\cdot\left(x-1\right)}\)
\(\left(\frac{\sqrt{a}-2}{a-1}-\frac{\sqrt{a}+2}{a+2\sqrt{a}+1}\right)\cdot\frac{\left(1-a\right)^2}{2}\)
giải hệ phương trình :
a) \(\hept{\begin{cases}x\cdot\left(1+y-x\right)=-2\cdot y^2-y\\x\cdot\left(\sqrt{2\cdot y}-2\right)=y\cdot\left(\sqrt{x-1}-2\right)\end{cases}}\)
b) \(\hept{\begin{cases}1+x\cdot y+\sqrt{x\cdot y}=x\\\frac{1}{x\cdot\sqrt{x}}+y\cdot\sqrt{y}=\frac{1}{\sqrt{x}}+3\cdot\sqrt{y}\end{cases}}\)
Làm hộ mk nhé mk tick cho :))))))))))
\(\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{2}{a-4}\right)\cdot\left(\sqrt{a}-1+\frac{\sqrt{a}-4}{\sqrt{a}}\right)\)
giải hệ phương trình: A, \(\frac{1}{x}+\frac{1}{y}=9\) và \(\left(\frac{1}{\sqrt[3]{x}}+\frac{1}{\sqrt[3]{y}}\right)\cdot\left(\frac{1}{\sqrt[3]{x}}+1\right)\cdot\left(\frac{1}{\sqrt[3]{y}}+1\right)=18\)
B,\(3x^2-y=0\) và \(\left(\sqrt{5x^3-4}+2\sqrt[3]{7x^2-1}\right)\cdot\frac{y+4}{3}=2\cdot\left(y+19\right)\)
1. Rút gọn biểu thức:
a) \(\sqrt{27\cdot48\cdot\left(1-a\right)^2}\)với a>1
b) \(\frac{1}{a-b}\cdot\sqrt{a^4\left(a-b\right)^2}\) với a>b
c) \(\sqrt{\frac{2a}{3}}\cdot\sqrt{\frac{3a}{8}}\)với \(a\ge0\)
d) \(\sqrt{13a}\cdot\sqrt{\frac{52}{a}}\)với a>0
e) \(\left(3-a\right)^2-\sqrt{0.2}\cdot\sqrt{180a^2}\)
1) \(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+3\right)\)
2) \(0.1\sqrt{\left(-3\right)^2}\cdot\left[6\sqrt{\left(-\frac{1}{3}\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\right]^2\)
3) \(\left(\frac{3+2\sqrt{3}}{\sqrt{3}+2}+\frac{2+\sqrt{2}}{\sqrt{2}+1}\right)\div\left(1\div\frac{1}{\sqrt{2}+\sqrt{3}}\right)\)
4) \(\left(\frac{3\sqrt{2}+\sqrt{6}}{\sqrt{12}+2}-\frac{\sqrt{54}}{3}\right)\cdot\frac{2}{\sqrt{6}}\)
5) \(\sqrt{\frac{5+2\sqrt{6}}{5-2\sqrt{6}}}+\sqrt{\frac{5-2\sqrt{6}}{5+2\sqrt{6}}}\)
Tính \(A=\sqrt[3]{\frac{x^3-3x+\left(x^2-1\right)\cdot\sqrt{x^2-4}}{2}}+\sqrt[3]{\frac{x^3-3x-\left(x^2-1\right)\cdot\sqrt{x^2-4}}{2}}\)
Tại \(x=\sqrt[3]{1995}\)
Giải phương trình:
a)\(3\cdot\left(x^2-x+1\right)=8\cdot\left(x^3+x\right)\)
b) \(x^2+2x\cdot\sqrt{x-\frac{1}{x}}=3x+1\)
c) \(x^2+\sqrt[4]{x^4-x^2}=2x+1\)
d) \(\sqrt{x-1}+\sqrt{3-x}+4x\cdot\sqrt{2x}=x^3+10\)
e) \(\sqrt{2-x^2}+\sqrt{2-\frac{1}{x^2}}=4-\left(x+\frac{1}{x}\right)\)