= 1/2 .( 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + 1/3.4 - 1/4.5 + .......+ 1/2014.2015 - 1/2015.2016)
= 1/2 ( 1/2 - 1/2015.2016)
Tính tiếp p nhé.
= 1/2 .( 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + 1/3.4 - 1/4.5 + .......+ 1/2014.2015 - 1/2015.2016)
= 1/2 ( 1/2 - 1/2015.2016)
Tính tiếp p nhé.
Tính\(\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+...\frac{1}{2014\times2015\times2016}\)
Cho B= \(\frac{1\times2}{1\times2\times3}+\frac{1\times2}{1\times2\times4}+\frac{1\times2}{1\times2\times3\times4}+\frac{1\times2}{1\times2\times3\times4\times5}+....+\frac{1\times2}{n,giao}\left(n\in N,n\ge3\right)\)
chứng tỏ B nhỏ hơn 3
\(\frac{1\times2}{2\times3}+\frac{2\times3}{3\times4}+\frac{3\times4}{4\times5}+...+\frac{98\times99}{99\times100}\)
Hỹ tính tổng sau bằng cách hợp lý
\(C=\frac{1}{1\times2\times3\times4}+\frac{1}{2\times3\times4\times5}+...+\frac{1}{27\times28\times29\times30}\)
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}\)
Xét tổng S gồm 20 số hạng:
\(S=\frac{1}{1\times2\times3\times4}+\frac{1}{2\times3\times4\times5}+...+\frac{1}{20\times21\times22\times23}\)
So sánh S với \(\frac{1}{18}\)
Tinh \(\left(1-\frac{2}{2\times3}\right)\times\left(1-\frac{2}{3\times4}\right)\times\left(1-\frac{2}{4\times5}\right)\times...\times\left(1-\frac{2}{2015\times2016}\right)\)
tính nhanh :
\(E=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+.....+\frac{1}{120}\)
\(D=\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{4\times5\times6}+......+\frac{36}{25\times2729}\)
\(A=\frac{1^2}{1\times2}\times\frac{2^2}{2\times3}\times\frac{3^2}{3\times4}\times\frac{4^2}{4\times5}\)