tìm x biết
\(x+\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}=\frac{4}{3}\times\frac{9}{8}\times\frac{16}{15}\times....\times\frac{100}{99}+\frac{9}{110}\)
Tìm tích:
1.\(\left(\frac{1}{2}+1\right)\times\left(\frac{1}{3}+1\right)\times\left(\frac{1}{4}+1\right)\times...\times\left(\frac{1}{999}+1\right)\)
2.\(\left(\frac{1}{2}-1\right)\times\left(\frac{1}{3}-1\right)\times\left(\frac{1}{4}-1\right)\times...\times\left(\frac{1}{1000}-1\right)\)
3.\(\frac{3}{2^2}\times\frac{8}{3^2}\times\frac{15}{4^2}\times...\times\frac{99}{10^2}\)
\(\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times\frac{4}{5}...\frac{99}{100}\)
\(A=\left(1\frac{1}{6}\times\frac{6}{7}\times6:\frac{3}{5}\right):\left(4\frac{1}{5}\times\frac{10}{11}+5\frac{2}{10}\right)\)
\(B=1\frac{13}{15}\times25\%\times3+\left(\frac{8}{15}-\frac{79}{60}\right):1\frac{23}{4}\)
\(C=\frac{123}{4567}\times\frac{1}{8}+\frac{123}{4567}\times\frac{1}{2}-\frac{123}{4567}\times\frac{13}{8}\)
\(D=\frac{10\frac{1}{3}\times\left(24\frac{1}{2}-15\frac{6}{7}\right)-\frac{12}{11}\times\left(\frac{10}{3}-1,75\right)}{\left(\frac{5}{9}-0,25\right)\times\frac{60}{11}+194\frac{8}{99}}\)
\(\frac{1}{3}\times\frac{2}{5}\times\frac{3}{7}\times\frac{4}{9}\times\frac{5}{11}\times\frac{6}{15}\times\frac{7}{15}\times\frac{8}{15}\times\frac{9}{19}\times\frac{10}{21}\times\frac{11}{32}\times\frac{12}{25}\times\left\{\frac{126}{252}-\frac{2}{4}\right\}\)
Tính:
\(A=\frac{1^2}{1\times2}\times\frac{2^2}{2\times3}\times\frac{3^2}{3\times4}\times...\times\frac{99^2}{99\times100}\times\frac{100^2}{100\times101}\)
Chứng tỏ rằng: \(\frac{1}{1}\times\frac{1}{3}\times\frac{1}{5}\times.....\times\frac{1}{99}=\frac{2}{51}\times\frac{2}{52}\times\frac{2}{53}\times.....\times\frac{2}{100}\)
Tháng này mình không online thường xuyên nữa, bạn nào muốn nói chuyện vs mk thì vào chức năng chát
\(\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times\frac{4}{5}\times...\times\frac{98}{99}\times\frac{99}{100}\)
Chứng minh rằng \(\frac{1}{2}\times\frac{3}{4}\times\frac{5}{6}\times\frac{7}{8}\times...\times\frac{99}{100}< 0,01\)