Đặt: \(A=\frac{1}{14}+\frac{1}{28}+\frac{1}{56}+....+\frac{1}{896}\)
\(\Rightarrow\)\(2A=\frac{1}{7}+\frac{1}{14}+\frac{1}{28}+....+\frac{1}{448}\)
\(\Rightarrow\)\(2A-A=\left(\frac{1}{7}+\frac{1}{14}+....+\frac{1}{448}\right)-\left(\frac{1}{14}+\frac{1}{28}+.....+\frac{1}{896}\right)\)
\(\Rightarrow\)\(A=\frac{1}{7}-\frac{1}{896}=\frac{127}{896}\)
mà \(A=x-3\)
nên \(x-3=\frac{127}{896}\)
\(\Rightarrow\)\(x=3\frac{127}{896}\)