\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
=\(\frac{1}{1}-\frac{1}{50}=\frac{50}{50}-\frac{1}{50}=\frac{49}{50}\)
bài toán giải theo phương pháp khử liên tiếp (Toán nâng cao). Áp dụng công thức: \(\frac{a}{k.m}=\frac{a}{k}-\frac{a}{m}\)với a,k,m\(\in N\)
\(k< m;m-k=a\)