Gọi dãy trên là A
\(\Leftrightarrow2A=\frac{2}{11\cdot13}+\frac{2}{13\cdot15}+...+\frac{2}{19\cdot21}\)
\(\Leftrightarrow2A=\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{19}-\frac{1}{21}\)
\(\Leftrightarrow2A=\frac{1}{11}-\frac{1}{21}+0+...+0\)
\(\Leftrightarrow2A=\frac{10}{231}\)
\(\Leftrightarrow A=\frac{5}{231}\)
Bái này lp 6 bọn mk lm suốt r`. Nó cx ko khó lắm đâu bn. Dễ mà.
Học tốt.
1/11*13 + 1/13*15 + 1/15*17 + ... + 1/19*21
= 1/2(2/11*13 + 2/13*15 + 2/15*17 + ... + 2/19*21)
= 1/2(1/11 - 1/13 + 1/13 - 1/15 + 1/15 - 1/17 + ... + 1/19 - 1/21)
= 1/2(1/11 - 1/21)
= 1/2*10/231
= bn tự tính nốt
\(\frac{1}{11.13}+\frac{1}{13.15}+\frac{1}{15.17}+...+\frac{1}{19.21}\) \(=\frac{1}{2}\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}+...+\frac{1}{19}-\frac{1}{21}\right)\)
\(=\frac{1}{2}\left(\frac{1}{11}-\frac{1}{21}\right)=\frac{1}{2}.\frac{10}{231}=\frac{5}{231}\)
\(\frac{1}{11.13}+\frac{1}{13.15}+\frac{1}{15.17}+...+\frac{1}{19.21}\)
\(=\frac{1}{2}.\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+...+\frac{1}{19}-\frac{1}{21}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{11}-\frac{1}{21}\right)\)
\(=\frac{1}{2}.\frac{10}{231}\)
\(=\frac{5}{231}\)
\(\frac{1}{11.13}+\frac{1}{13.15}+\frac{1}{15.17}+...+\frac{1}{19.21}\)
= \(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+...+\frac{1}{19}-\frac{1}{21}\)
= \(\frac{1}{11}-\frac{1}{21}\)
=\(\frac{10}{231}\)
~~~
#Suns
gọi \(\frac{1}{11.13}+\frac{1}{13.15}+\frac{1}{15.17}+......+\frac{1}{19.21}\) là A
2A= \(\frac{2}{11.13}+\frac{2}{13.15}+\frac{2}{15.17}+......+\frac{2}{19.21}\)
2A= \(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+......+\frac{1}{19}-\frac{1}{21}\)
2A= \(\frac{1}{11}-\frac{1}{21}\)
2A= \(\frac{10}{231}\)
A= \(\frac{5}{231}\)
CHÚC BẠN HỌC TỐT
\(2A=\frac{2}{11.13}+\frac{2}{13.15}+....+\frac{2}{19.21}\)
\(2A=\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+....+\frac{1}{19}-\frac{1}{21}\)
\(2A=\frac{1}{11}-\frac{1}{21}=\frac{10}{231}\)
\(A=\frac{10}{\frac{231}{2}}=\frac{20}{231}\)
\(S=\frac{1}{11.13}+\frac{1}{13.15}+...+\frac{1}{19.21}\)
\(2S=\frac{2}{11.13}+\frac{2}{13.15}+...+\frac{2}{19.21}\)
\(2S=\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{19}-\frac{1}{21}\)
\(2S=\frac{1}{11}-\frac{1}{21}=\frac{10}{231}\)
\(S=\frac{10}{231}:2=\frac{5}{231}\)
Gọi dãy số trên là A
\(2A=\frac{2}{11.13}+\frac{2}{13.15}+....+\frac{2}{19.21}\)
\(2A=\frac{2}{11}-\frac{2}{13}+\frac{2}{13}-\frac{2}{15}+...+\frac{2}{19}-\frac{2}{21}\)
\(2A=\frac{2}{11}-\frac{2}{21}=\frac{20}{231}\)
\(\Rightarrow A=\frac{20}{231}:2=\frac{10}{231}\)
\(\frac{1}{11.13}+\frac{1}{13.15}+\frac{1}{15.17}+...+\frac{1}{19.21}\)
\(=\frac{1}{2}\left(\frac{2}{11.13}+\frac{2}{13.15}+\frac{2}{15.17}+...+\frac{2}{19.21}\right)\)
\(=\frac{1}{2}\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+...+\frac{1}{19}-\frac{1}{21}\right)\)
\(=\frac{1}{2}\left(\frac{1}{11}-\frac{1}{21}\right)\)
\(=\frac{1}{2}.\frac{10}{231}=\frac{5}{231}\)