Đặt A = \(\frac{1}{2}+\frac{1}{2.2}+\frac{1}{2.2.2}+....+\frac{1}{2.2.2.2.2.2.2.2.2.2}\)
=> A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{10}}\)
=> 2A = \(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^9}\)
=> 2A - A = \(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^9}-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
=> A = \(1-\frac{1}{2^{10}}\)